EMPLOYMENT OF LINEAR AND NONLINEAR PROGRAMMING IN DESIGNING AND MANAGING AQUACULTURES

By

WALEED MOHAMMED ALI HASAN ALSHORBAGY

B. Sc. Agric. Sc. (Agricultural Engineering), Zagazig University, 2006.

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science

(Agricultural Engineering)

Department of Agricultural Engineering

Faculty of Agriculture

Ain Shams University

2013

Approval Sheet

EMPLOYMENT OF LINEAR AND NONLINEAR PROGRAMMING IN DESIGNING AND MANAGING AQUACULTURES

WALEED MOHAMMED ALI HASAN ALSHORBAGY
B. Sc. Agric. Sc.(Agricultural Engineering), Zagazig University, 2006
This thesis for M.SC.degree has been approved by:

Dr.Azmy Mahmoud ELBery
Prof. of Agricultural Engineering, Faculty of Agriculture, Cairo University.

Dr.MostafaFaheem Mohammed
Associate Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed N. EL Awady
Prof. Emeritus of Agricultural Engineering, Faculty of

Date of Examination: 30/10 / 2013

Agriculture, Ain Shams University.

EMPLOYMENT OF LINEAR AND NONLINEAR PROGRAMMING IN DESIGNING AND MANAGING AQUACULTURES

By

WALEED MOHAMMED ALI HASAN ALSHORBAGY

B. Sc. Agric. Sc. (Agricultural Engineering), Zagazig University, 2006.

Under the supervision of:

Dr. Mohamed Nabil EL Awady

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, (Principal Supervisor).

Dr. Mohamed Abdel-Magid Ibrahim Omar Genaidy

Associate Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Samir Ahmad Ali

Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Benha University.

Dr. Mohamed Abd el-Backy

Associate Prof. of Animal Phys, Department of Animal Production, Faculty of Agriculture, Ain Shams University.

Acknowledgements

First of all, I owe to **Allah** giving me the strength and patience to complete this work.

I also wish to express deepest appreciation and sincere gratitude to my supervisors: **Dr. Mohamed N. El Awady** Prof. Agricultural Engineering College of Agriculture, Ain Shams University, **Dr. Mohammed A. Genaidy** Assoc. prof. Agricultural Engineering, College of Agriculture, Ain Shams University, **Dr. Samir A. Ali**, Prof. Agricultural Engineering, College of agriculture, Benha University, and **Dr. Mohammed Abd El Backy**, Asso. Prof. Animal Production, College of Agriculture, Ain Shams University, for their close and sincere supervision, valuable guidance and suggestions during the study and generous encouragement.

I would like to thank my mother and my brothers Mr. Said, Mr. Mahmoud, and Mr. Osama, for generous encouragement.

LIST OF FIGURES

No.	Item
3.1	Filling data in excel sheet.
3.2	Data/ solver
3.3	The final result show the number of devices that used by least cost
3.4	Splash aerator, (Website, © 2005 Creel pump)
3.5	Splash aerator at work, (Website, ©2010 Clay tech)
3.6	Force 7.2 aerator, (Website, ©2009 bio remedy)
3.7	New Brio aerator, (Website, aquaculture equipment)
3.8	Different configurations for the Paddlewheels, (Website, © 1996-2013 all products online Corp)
3.9	Speed reducer for the paddlewheel aerators, (Website, © 1999-2013 alibaba)
3.10	Nylon impeller for the paddlewheel aerators (Website, © 1999-2013 alibaba)
3.11	Air-injector aerators, (Website, © 1998 - 2011 Hi. world trade center)
3.12	Float mounted air injector aerator, (Website, ©1999-2010 Canadian pond.ca products ltd)
3.13	Bottom mounted air injector aerator (Website, ©1999-2010 Canadian pond.ca products ltd)
4.1	The relationship between the fry buying capital and profit
4.2	The relationship between the fish feed cost and profit
7.1	steps of linear programming solution by Microsoft Excel for
	selecting optimal aeration systems in 0.1 ha

7.2	Linear programming results for selecting optimal aeration systems in 0.2 ha
7.3	Linear programming results for selecting optimal aeration systems in 0.4 ha
7.4	Linear programming results for selecting optimal aeration systems in 0.8 ha.
7.5	Linear programming results for selecting optimal aeration systems in 1.6 ha
7.6	Linear programming results for selecting optimal aeration systems in 3.2 ha.
7.7	Linear programming results for selecting optimal aeration systems in 4.0 ha
7.8	Linear programming results for selecting optimal aeration systems in 4.8 ha
7.9	steps of linear programming solution by Microsoft Excel for selecting optimal mix of fish types by keeping all factors constant and fry buying cost is10,000 LE
7.10	Linear programming results for selecting optimal mix of fish types by keeping all factors constant and fry buying cost is15,000 LE.
7.11	Linear programming results for selecting optimal mix of fish types by keeping all factors constant and fry buying cost is 20,000 LE
7.12	Linear programming results for selecting optimal mix of fish types by keeping all factors constant and fry buying cost is

	25,000 LE
7.13	Linear programming results for selecting optimal mix of fish types by keeping all factors constant and fry buying cost is 30,000 LE.
7.14	Linear programming results for selecting optimal mix of fish types by keeping all factors constant and fry buying cost is 35,000 LE.
7.15	linear programming results for selecting optimal mix of fish types by keeping all factors constant and fry buying cost is 40,000 LE
7.16	steps of linear programming solution by Microsoft Excel for selecting optimal mix of fish types by keeping all factors constant and feed cost is 240,000 LE.
7.17	Linear programming results for selecting optimal mix of fish types by keeping all factors constant and feed cost is 260,000 LE.
7.18	Linear programming results for selecting optimal mix of fish types by keeping all factors constant and feed cost is 280,000 LE.
7.19	Linear programming results for selecting optimal mix of fish types by keeping all factors constant and feed cost is 300,000 LE

LIST OF TABLES

No.	Item	Page
2.1	Factors for rapid solution of the aerator performance equation (multiply the oxygen transfer rate obtained for standard conditions by the appropriate factor to get the oxygen transfer rate for pond conditions)	21
2.2	Average aeration effectivness (E) and mechanical efficiency (ME) for seven gravity aerator types	23
3.1	Symbols of selected aerators	35
3.2	Technical Specification for Force 7.2 , (Website, ©2009 bio remedy)	38
3.3	The models of New Brio aerator and its voltages (Website, aquaculture equipment, 2013)	39
3.4	Capital investment for aeration devices	47
3.5	The prices of sale fish on Egypt markets, (2012/2013 level)	48
3.6	The fry cost, (2012/2013 level)	49
3.7	The fish feed cost, (2012/2013 level)	49
4.1	Standard oxygen transfer ratio (SOTR) of aerators and the total cost of all aerators at one night (10 hours)	50
4.2	Required SOTR for various pond sizes	52
4.3	The results of linear programming to select optimal aeration systems for various pond sizes at 4 ppm of	
	oxygen added	53

4.4	The symbols of fish types	56
4.5	Linear programming results of changing fry buying cost with kept all factors constant	59
4.6	Linear programming results of changing feed cost with kept all factors constant	61
5.1	Linear programming results of changing fry buying cost with kept all factors constant	66
5.2	Linear programming results of changing feed cost with kept all factors constant	66

CONTENTS

No.	Title	page
	LIST OF TABLES	v
	LIST OF FIGURES	vii
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
2.1.	Linear programming	4
2.1.1.	Linear programming rules	4
2.1.1.1.	Function of linear programming	5
2.1.1.2.	Standard form of linear programming	6
2.1.2.	LP Problem Formulation Process and Its Applications	8
2.2.	Aquaculture	12
2.2.1.	Aeration	12
2.2.1.1.	Dissolved oxygen	13
2.2.1.2.	Principles of aeration	17
2.2.1.3.	Aerator system requirements	19
2.2.1.4.	Rating aerators under field conditions	20
2.2.1.5.	Aeration practices	24
2.2.2	polyculture Fish	29
2.2.2.1	Tilapia fish	29

2.2.2.2	Mullet fish	29
2.2.3	Poly culture	31
3.	Materials and methods	32
3.1.	The first linear programming model	32
3.2.	The second linear programming model	32
3.3.	Example illustrates the method of solving linear programming	32
3.1.1.	Selected aeration devices	34
3.1.1.1.a	Splash aerator	35
3.1.1.1.b	The principle of the device	36
3.1.1.2.	Force 7.2 aerator	37
3.1.1.3.	New brio aerator	38
3.1.1.4.	Paddlewheel aerators	40
3.1.1.5.	Air-injector aerators	44
3.1.2.	Calculations of total cost for aerators	46
3.1.2.1.	Capital investment	47
3.2.1.	The generalized form of the linear program for the second linear programming model	47
3.2.2.	Selected fish types	48
3.2.2.1.	Prices of sale fish on Egypt markets	48
3.2.2.2.	Fry buying prices	49

3.2.2.3.	Fish feed cost.	49
4.	RESULTS AND DISCUSSION	50
4.1.	The first linear programming model, (Aerators designing in ponds)	50
4.1.1.	Objective function	50
4.1.2.	The constraint functions for various pond sizes	51
4.1.3.	The results of linear programming to select optimal aeration systems	52
4.2.	The second linear programming model, (polyculture managing)	55
4.2.1.	The idea of organizing data in a linear programming model	55
4.2.1.	Objective function	56
4.2.2.	Constraints	56
4.2.2.1.	Fry fish prices buying constraint	56
4.2.2.2.	Fish feed constraint	56
4.2.2.3.	The volume of pond that suitable to all fish types constraint	57
4.2.3.	All factors kept constant except fry buying cost	31
		58
4.2.4.	All factors kept constant except feed cost	60
4.2.5.	The relation between economic fry buying cost	

	and feed cost	62
5.	SUMMARY AND CONCULSION	63
5.2.	The first part of study, (Aerators designing in ponds)	63
5.3.	The second part of this study, (polyculture managing)	64
6.	References	68
7.	APPENDICES	73
	ARABIC SUMMARY	

1- INTRODUCTION

Linear programming (LP) is a computational method of selecting, allocating and evaluating limited resources with linear, algebraic constraints to obtain an optimal solution for a linear, algebraic objective function. They are used in administrative and economic planning to maximize the linear functions of a large number of variables, subject to certain constraints.

The ability to introduce LP using a graphical approach, the relative ease of the solution method, the widespread availability of LP software packages, and the wide range of applications make LP accessible. Additionally, LP provides an excellent opportunity to introduce the idea of "what-if" analysis, due to the powerful tools for post-optimality analysis developed for the LP model.

LP deals with a class of programming problems where both the objective function to be optimized are linear and all relations among the variables corresponding to resources are linear. This problem was first formulated and solved in the late 1940's.

Today, this theory is being successfully applied to problems of capital budgeting, design of diets, conservation of resources, games of strategy, economic growth prediction, and transportation systems. In very recent times, LP theory has also helped resolve and unify many outstanding applications.

In this thesis, LP is used in aquatic culture in which many of the important water quality parameters are the dissolved gases, such as oxygen, carbon dioxide, hydrogen sulfide, ammonia, and nitrogen. Aeration, or the addition of dissolved oxygen (DO), is one of the processes most commonly used in aquaculture.

1- INTRODUCTION

The maintenance of environmental quality requires control of levels of dissolved gas. The "best" aeration system for a given application depends on site conditions, production schedules, the layout of the rearing units, and operational procedures.

The growth of fish is not affected until the dissolved oxygen (DO) drops below a critical concentration. This critical concentration is influenced by temperature and by feeding level; it ranges from 5 to 6 mg/L (ppm) for salmon and trout (Salmonidae) and from 3 to 4 mg/L (ppm) for warm-water fish such as channel catfish. The use of oxygen supplementation can also increase survival and improve fish health and quality. Some of the beneficial effects of oxygen supplementation may be due to the stripping of chronic levels of gas super saturation. The design of an aeration system must consider the potential impacts on all the dissolved gases in solution.

In a number of systems, oxygen transfer rate is more important than efficiency. Tractor-powered paddlewheel aerators have been used widely in catfish ponds for emergency aeration and can easily be moved from pond to pond when needed. Diffused aeration with pure oxygen is widely used in transportation systems and in emergency for high-intensity systems, because of its ability to transfer large amounts of oxygen without any power input.

The first phase, in this thesis, is linear programming used to select optimal aeration systems based on minimization of total annual cost using suitable aeration devices for size of pond to give optimum oxygen to that size of pond. The second phase deals with using of linear programming for choosing optimum types of fish (tilapia, cat fish, and mullet) on poly culture, to give high profit with available potential.