SOCIAL & ENVIRONMENTAL VARIABLES RELATED TO BREAST SWELLINGS AMONG EGYPTIAN WOMEN

(DIAGNOSTIC STUDY USING MAMMOGRAPHY)

Submitted By Ghada Khamis Ramadan Selim

M.B.B.Ch., Faculty of Medicine, Ain Shams University, 1992

Master of (Radio Diagnosis), Faculty of Medicine, Ain

Shams University, 1999

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Science

Department of Environmental Medical Science Institute of Environmental Studies and Research Ain Shams University

2013

APPROVAL SHEET

SOCIAL & ENVIRONMENTAL VARIABLES RELATED TO BREAST SWELLINGS AMONG EGYPTIAN WOMEN

(DIAGNOSTIC STUDY USING MAMMOGRAPHY)

Submitted By

Ghada Khamis Ramadan Selim

M.B.B.Ch., Faculty of Medicine, Ain Shams University, 1992 Master of (Radio Diagnosis), Faculty of Medicine, Ain Shams University, 1999

This thesis Towards a Doctor of Philosophy Degree in Environmental Science Has been Approved by:

Name Signature

1-Prof. Dr. Mostafa Hassan Ragab

Prof. of Environmental Medicine, Department of Environmental Medical Science Institute of Environmental Studies & Research Ain Shams University

2-Prof. Dr. Mahmoud Serry El Bokhary

Prof. & Head of Department of Environmental Medical Science Institute of Environmental Studies & Research Ain Shams University

3-Prof. Dr. Abd El Moniem Sayed Moustafa Raghab

Prof. of Radio Diagnosis Faculty of Medicine Al Azhar University

2013

SOCIAL & ENVIRONMENTAL VARIABLES RELATED TO BREAST SWELLINGS AMONG EGYPTIAN WOMEN (DIAGNOSTIC STUDY USING MAMMOGRAPHY)

Submitted By

Ghada Khamis Ramadan Selim

M.B.B.Ch., Faculty of Medicine, Ain Shams University, 1992 Master of (Radio Diagnosis), Faculty of Medicine, Ain Shams University, 1999

A thesis submitted in Partial Fulfillment Of

The Requirement for the Doctor of Philosophy Degree
In

Environmental Science
Department of Environmental Medical Science

Under The Supervision of:

1- Prof. Dr. Mostafa Hassan Ragab

Prof.& Head of Department of Environmental Medical Science Institute of Environmental Studies & Research Ain Shams University

2-Dr. Sherif Hamed Abo Gamrah

Assistant Prof. of Radio Diagnosis Faculty of Medicine Ain Shams University

3-Dr. Nancy Mohamed Mohamed Sallam

Lecturer in Department of Environmental Medical Science Institute of Environmental Studies & Research Ain Shams University

2013

First of all I wish to express my thanks to **Allah**, to the Most Merciful and the Most Grateful for His generous care throughout my life.

I cannot find enough words to express my deep feelings to wards my supervisors for their great helps and guidance in producing this thesis.

My gratitude and deep appreciation to **Prof. Dr. Moustafa Hassan Ragab**, Prof. of Environmental Medicine and Occupational

Diseases, Medical Department, Institute of Environmental studies and

Researches, Ain Shams University for his guidance, valuable advice,

continuous encouragement and close supervision so no wards can express

my deep gratefulness. I have the honor to complete this work under his

supervision.

I would like to express my sincere thanks and highest appreciation to **Dr. Sherif Hamed Abo Gamrah**, Assistant Professor of Radiology, Faculty of Medicine, Ain Shams University for his support, wise advice and precious time he had offered me.

I am deeply grateful to **Dr. Nancy Mohamed M. Sallam,**A Lecturer in Medical Department, Institute of Environmental studies
and Research, for her great efforts during this work.

Lastly I would like to express my thanks to everyone who helped me during work and i never forget the patients to whom we owe a lot.

ABSTRACT

The Aim of the Study is to assess the role of mammography in detection of any neoplastic changes (as early as possible) that might affect the women breast that could be ascribed to environmental and social risk exposure.

Subjects and methods: it is a hospital based cross sectional study that include 150 women, 100 of them had neoplastic changes in the breast (by mammography) and the other 50 women had no neoplastic changes in the breast (by mammography). These women were more than 18 years, not previously treated with hormones or radiation therapy, have no family history for the disease, not lactating and the lesions not due to trauma. After proper constant all women were submitted to clinical examination, after that all women are submitted to mammography examination, then all completed a questionnaire to investigate about, age, height, weight, marital status, educational level, occupation, age of menarche, period regularity, age of menopause, age of marriage, sexual relationship, age at delivery of first and last child number of children, lactation, contraception, wearing habits, eating habits, special habits, work, physical activities, chemical exposure, home characteristics, home appliances, monthly income and husband characteristics.

This study revealed that, there was significant increase in women that had neoplastic changes in the breast as regard weight, BMI, first baby and last age, wearing tight and synthetic bra, long duration of exposure to problems in work and to hazardous substances, smoking exposure, use of contraception, kuhl usage, long term use of medication, increase of crowding index, Geer paint and tiles at home and presence of TV at bedroom, in comparison to women that had no neoplastic changes in breast.

Also the study revealed that, there was significant decrease in women that had neoplastic changes in the breast as regard age of menarche, exclusive breast feeding, decrease number of children, age of weaning in comparison to women that had no neoplastic changes.

Also revealed that, there was no significant difference between women that had neoplastic changes in the breast and the women that had no neoplastic changes in the breast as regard age, height marital status, occupation, educational level, age of menopause or age of marriage, period regularity, sexual relationship, type and duration of contraception, wearing bra, type of work, working hours, shifts in work, problems in work or type of hazardous substances, smoking type, eating habits, physical activities, use of cosmetic or perfumes and hair dyes, type of medications, radiological exposure, breast self examination, home size, floor number, type of home, ventilation type, presence of home appliances expect TV, monthly income or husband characters. So subsequent controlled studies are needed to validate each factor separately.

List of Contents

Subject	Page No.
Abstract	
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	I
Aim of the work	3
Review of Literature	
Anatomy of the female breast	4
Breast Masses-General Background	19
Breast Cancer	24
Diagnosis of breast cancer	55
Early Detection of the Breast Cancer	80
Mammography	83
Technical Aspects of Digital Mammography	94
Subjects and methods	109
Results	113
Discussion	124
Summary and conclusion	144
References	150
Appendix	I
Arabic Summary	

List of Abbreviations

AEC : Automatic exposure control
AHH : Aryl hydrocarbon hydroxylase

AJCC : American Joint Commission on Cancer ASCO : American Society of Clinical Oncology

BC: Before Christianity

BCSC : Breast Cancer Surveillance Consortium
BI-RADS : Breast Imaging Reporting and Data System

BMI : Body mass index

BRCA: Breast cancer susceptibility gene

BSE : Breast self-examination

CA : Cancer antigen

cAMP : cyclic adenosine monophosphateCAT : Computed Axial TomographyCCC : Columbia Clinical Classification

CI : Confidence interval

DCIS : Ductal carcinoma in situ

DMIST: The Digital Mammography Imaging Screening Trial

ER : Estrogen receptor

FDA : Food and Drug Administration

FDG : Fluorodeoxyglucose

FNAB : Fine-needle aspiration biopsyFNAC : Fine Needle Aspiration Cytology

HER2 : Human epidermal growth factor receptor 2

HR : Hazard ratio

IARC : The International Agency for Research on Cancer

IDC : Invasive ductal carcinoma
ILC : Invasive lobular carcinoma

kV(p) : Low peak kilovoltLAN : Light at night

List of Abbreviations (Cont...)

LCIS : Lobular carcinoma in situ

MRI : Magnetic resonance imaging

MWS : Million Women Study

NHSC : Nurses Health Study Cohort

NST : No special type
ORs : Odds ratios

PAH : Polycyclic aromatic hydrocarbon

Pb : Lead

PET : Positron emission tomography

PgR : progesterone receptors
PNL : Posterior nipple line

PSA : Prostatic specific antigen
QALY : Quality-adjusted life years
RCTs : Randomized control trials

ROC : Receiver operator characteristic

RR : Relative risk

SEER : Surveillance, Epidemiology, and End Results

SLN : Sentinel lymph node

US : Ultrasound

USPSTF : U.S. Preventive Services Task ForceVEGF : Vascular Endothelial Growth Factor

WHI : Women health initiative

List of Tables

Cable No	v. Eitle	Page No.
Table (1):	Established risk factors for breast cancer in fem	ales34
Table (2):	Approximate survival (%) of patients with cancer by TNM staging system	
Table (3):	Triple assessment	55
Table (4):	Comparison between study and control ground regard age and anthropometric measurements	-
Table (5):	Comparison between study and control ground regard to marital state, job and educational level	•
Table (6):	Comparison between study and control ground regard menarche, menopausal age and age marriage	ge of
Table (7):	Obstetric and sexual history in studied cases	115
Table (8):	Age of first and last babies, number of children age of weaning in studied cases	
Table (9):	Breast feeding and contraception in studied gro	ups116
Table (10):	Wearing bra and its characters in studied cases.	116
Table (11):	Comparison between study and control ground regard work characters	
Table (12):	Comparison between study and control ground regard to smoking	_
Table (13):	Comparison between study and control ground regard to eating habits	
Table (14):	Comparison between study and control ground regard to physical activity	
Table (15):	Comparison between study and control ground regard to chemical substances exposure	•
Table (16):	Comparison between study and control ground regard to taking medications	•
Table (17):	Comparison between study and control ground regard to radiological examination and breas examination	t self-

List of Tables (Cont...)

Cable No	. Eitle	Page No
Table (18):	Comparison between study and control regard to crowding	•
Table (19):	Comparison between study and control regard to home characteristics	
Table (20):	Comparison between study and control regard to electromagnetic appliances	
Table (21):	Comparison between study and control regard to monthly income and electrical bil	
Table (22):	Comparison between study and control regard to husband characters	

List of Figures

Figure No.	Eitle	Page No.
Figure (1):	Development of mammary glands	7
Figure (2):	Microanatomy of the female breast	13
Figure (3):	Mammogram showing a carcinoma	63
Figure (4):	Proper positioning for the MLO view	96
Figure (5):	Deficiencies in positioning for the MLO view	97
Figure (6):	Proper positioning for the CC view	98
Figure (7):	Inadequate compression	100
Figure (8):	Effects of variations in window width a workstation monitor or the laser printer on contrast on the RMLO view of the same patient	image
Figure (9):	Proper exposure can be assessed by evaluati tissue underlying the pectoralis muscle on the view	MLO
Figure (10):	Ghosting artifacts.	106
Figure (11):	Pixel drop-off (bad or failed pixel)	107

Introduction

Preast cancer is one of the oldest known forms of cancer tumors. Our oldest description of cancer (although term cancer was not used) was discovered in Egypt and dates back to approximately 1600 BC. The Edwin Smith Papyrus, or writing describes 8 cases of tumors or ulcers of the breast that were treated by cauterization, with a tool called "the fire drill" the writing says about the disease. "There is no treatment" (American Cancer Society, 2006).

Breast cancer refers to cancer originating from breast tissue. With best treatment and dependent on staging, 10 years disease free survival varies from 98% to 10%. Worldwide, breast cancer comprise 10.4% of all cancer incidence among women, making it the second most common type (after lung cancer) and the fifth most common causes of cancer death (World Cancer Report, 2003).

In 2004 breast cancer caused 519.000 deaths worldwide (7% of cancer death; almost of 1% of all deaths. The cause of breast cancer is unknown, but research shows that certain risk factors associated with the disease. About 90% of women who develop breast cancer don't have a family history of the disease. So, it's generally believed that the environment plays some role in the development of breast cancer (*Newman and Moorman*, 2005).

Many risk factors play an important role in breast cancer development, dietary customs as incidence increase with high fat diet and much decrease by high consumption of vegetables and fruits. Also, child bearing reduces risk with greater protection for early first births and a large number of births. Breast feeding is thought to have a protective effect. Electromagnetic fields and artificial light at night have been suggested to increase risk for breast cancer by decreasing nocturnal melatonin secretion. Occupational exposures such as exposure to DAT PCBs are structurally similar to endogenous estrogens. Also, exposures to radiation as the breast tissues are most sensitive to the effect of radiation. Physical activity is associated with reduced risk (*Freudenheim*, 2004).

Breast cancer screening refers to testing otherwise healthy women for breast cancer in an attempt to achieve an earlier diagnosis. The assumption is that early detection will improve outcomes. Mammographic screening for breast cancer to examine the breast for any uncharacteristic masses or lumps, it is found that mammograms reduce mortality from breast cancer by 15 percent (*Gotzsche and Nielsen*, 2009).

Aim of the work

o asses the role of mammography in detection of any neoplastic changes (as early as possible) that might affect the women breast that could be ascribed to environmental and social risk exposure.