

VARIOUS MODERN METHODS OF TREATMENT OF DIABETIC FOOT ULCERS

Essay
Submitted for Partial Fulfillment of M.S. degree
In General Surgery

By Emad Abd El-hameed Abd El-aal (M.B.B. CH.)

Under Supervision of

Prof. Dr. Ahmed Mahmoud Saad El-din Professor of General & Vascular Surgery

Professor of General & Vascular Surgery
Ain Shams University

Prof. Dr. Wagih Fawzy Abd-Elmalek

Professor of General & Vascular Surgery Ain Shams University

Dr. Ahmed Farouk Mohamed

Assistant Professor of Vascular Surgery Ain Shams University

> Faculty of Medicine Ain Shams University 2013

رؤية للطرق المتعددة الحديثة لعدلاج قرح القدم السكري

رسالة مقدمة من

الطبيب/ عمداد عبد الحميد عبد العدال توطئة للحصول على درجة الماجستير في الجراحة العامة

عه تنخصون على درجه الماجستير في

تحت إشراف

أ.د/ أح ـمـد محمـود سعــد الدين

أستاذ جراحة الأوعية الدموية جامعة عين شمس

أ.د/ وجهده فوزى عبد الماليك

أستاذ جراحة الأوعية الدموية جامعة عين شمس

د/ أح ـمــد فعاروق مـحـمــد

أستاذ مساعد جراحة الأوعية الدموية جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٣

بسم الله الرحمن الرحيم

صدق الله العظيم النساء.. أية رقم ١١٣

First and foremost thanks to God.

I have been honored and privileged to have worked under the supervision of such distinguished and eminent Professors. It has truly been a chance of a life time.

I would like to express my deepest gratitude to *Professor Dr. Ahmed Saad El-Din, Professor of Vascular Surgery, Faculty of Medicine, Ain Shams University, who had patiently supervised this work and without his supervision this work could have never been established. It has been a pleasure to proceed with this research under his supervision and guidance.*

This work could not express the feeling of gratitude and respect I carry to *Dr. Wagih Fawzy Abd-Elmalek*, Professor of Vascular Surgery, Faculty of Medicine, Ain Shams University, for his valuable assistance, sincere advice and for spending with me much of his Precious time which gave me the push and the will to give always my best throughout this work.

I shall always feel grateful to *Dr. Ahmed Farouk Mohamed*, Assistant Professor of Vascular Surgery, Faculty of Medicine, Ain Shams University, and all staff members of his department for their support and help.

Thanks

Emad Abd El-hameed Abd El-aal

LIST OF CONTENTS

	Contents	Page
INTRODUCTION		1
AIM OF THE WORK		4
LITERATURE:		
Chapter I:	Anatomy of the foot	5
Chapter II:	Etiology and Pathophysiology of diabetic foot ulcers	44
Chapter III:	Clinical examination and Evaluation of diabetic foot and diabetic foot	(0)
	ulcers	60
Chapter IV:	Modalities of treatment of diabetic foot ulcers	79
SUMMARY & CONCLUSION		146
REFERENCES		148
ARABIC SUMMARY		

LIST OF TABLES

	Table	Page
Table (1):	Clinical features of neuropathic and	
	ischemic foot	53
Table (2):	The wagner classification system	54
Table (3):	University of texas wound classification	
	system	56
Table (4):	Examples of moist wound healing	
	dressings	90
Table (5):	Examples of antimicrobial dressings	94

LIST OF FIGURES

	Figure	Page
Figure (1):	Bones of the foot	6
Figure (2):	Metatarsals and phalanges	8
Figure (3):	Ankle joint	9
Figure (4):	Medial ligament	10
Figure (5):	Lateral ligament	11
Figure (6):	Intertarsal joints	12
Figure (7):	Talocalcaneonavicular joint	13
Figure (8):	Tarsometatarsal, metatarsophalangeal,	
	and interphalangeal joints	15
Figure (9):	Tarsal tunnel and flexor retinaculum	16
Figure (10):	Extensor retinacula	19
Figure (11):	Fibular retinacula	20
Figure (12):	Arches of the foot	22
Figure (13):	Support for arches of the foot	23
Figure (14):	Plantar aponeurosis	24

List of figures

	Figure	Page
Figure (15):	Fibrous digital sheaths	25
Figure (16):	Extensor hoods	26
Figure (17):	Extensor digitorum brevis muscle	28
Figure (18):	First layer of muscles in the sole of the	
	foot	29
Figure (19):	Second layer of muscles in the sole of the	
	foot	30
Figure (20):	Third layer of muscles in the sole of the	
	foot	31
Figure (21):	Fourth layer of muscles in the sole of the	
	foot	32
Figure (22):	Arteries in the sole of the foot	35
Figure (23):	Dorsalis pedis artery	37
Figure (24):	Superficial veins of the foot	38
Figure (25):	Lateral and medial plantar nerves	42
Figure (26):	Terminal branches of superficial and deep	
	fibular nerves in the foot	42

List of figures

	Figure	Page
Figure (27):	The risk factors for ulceration	45
Figure (28):	Assessment of a diabetic foot ulcer	47
Figure (29):	Wagner grade 1	54
Figure (30):	Wagner grade 2	55
Figure (31):	Wagner grade 3	55
Figure (32):	Severe midfoot collapse due to Charcot-	
	neuroarthropathy	59
Figure (33):	Examination of vibration perception	65
Figure (34):	Use of the 10-g monofilament	66
Figure (35):	A biothesiometer	67
Figure (36):	Intrinsic muscular atrophy and foot	
	deformity	68
Figure (37):	Total-contact cast	85
Figure (38):	Scotch-cast boot	87
Figure (39):	Wound before maggot debridement therapy	101

List of figures

	Figure	Page
Figure (40):	Wound following three applications of	
	maggots	102
Figure (41):	Vacuum assisted closure	106
Figure (42):	Synthetic skin product	113
Figure (43):	Osteomyelitis of the first MTPJ	120
Figure (44):	wasting of the intrinsic musculature	121
Figure (45):	lesser metatarsal head resection	124
Figure (46):	The flexor digitorum brevis muscle flap	127
Figure (47):	Bilateral transmetatarsal amputation	137
Figure (48):	Midfoot Amputations	139

LIST OF ABBREVIATIONS

AGEs : Advanced glycation end products

ATP : Adenosine Tri-phosphate

CRP : C - reactive protein

EGF : Epidermal Growth Factor

ESR : Erythrocyte Sedimentation Rate

FDA : Food and Drug Administration

FGF : Fibroblast Growth Factor

GCSF : Granulocyte-Colony Stimulating Factor

IGFs : Insulin like Growth Factor

LEA : Lower extremity amputations

MIRE : Monochromatic Infrared Energy

MMP : Matrix Metalloproteinases.

MRI : Magnetic Resonance Imaging

MTPJ : Metatarsophalangeal Joint

NGF : Nerve Growth Factor

NO : Nitric Oxide

PDGF: Platelet Derived Growth Factors

PKC: Protein Kinase C

PTB : Patellar Tendon Bearing

SWM : Semmes–WeinsteinMonofilament

TCC : Total Contact Cast

TGF: Transforming Growth Factor

VAC : Vacuum assisted closure

VEGF: Vascular Endothelial Growth Factor

VPT : Vibration Perception Threshold

INTRODUCTION

Foot ulcers are a significant complication of diabetes mellitus and often precede lower-extremity amputation. The most frequent underlying etiologies are neuropathy, trauma, deformity, high plantar pressures, and peripheral arterial disease (*Boulton*, 2000).

Diabetic neuropathy is a debilitating disorder that occurs in nearly 50% of patients with diabetes (*American diabetes Association*, 2004).

A diabetic patient with a history of previous ulceration or amputation is at increased risk for further ulceration, infection and subsequent amputation. Alterations in foot dynamics due to ulceration, joint deformity or amputation can cause the abnormal distribution of plantar pressures and result in the formation of new ulcers (*Bild et al.*, 1989).

Peripheral arterial occlusive disease is four times more prevalent in diabetics than in non-diabetics. The arterial occlusion typically involves the tibial and peroneal arteries but spares the dorsalis pedis artery. Smoking, hypertension and hyperlipidemia commonly contribute to the increased prevalence of peripheral arterial occlusive disease in diabetics (*Lee et al.*, 1993).

Heel ulcers are a particularly difficult problem, often occurring as a consequence of heel pressure in the supine position. The ideal target to provide maximal perfusion to the heel is the posterior tibial artery. In its absence, the dorsalis pedis artery has proved to be an effective target for healing of heel ulcers (*Berceli*, 1999).

Foot disorders such as ulceration, infection, and gangrene are the leading causes of hospitalization in patients with diabetes mellitus (*Frykberg*, 1998).

Meticulous attention to foot care and proper management of minor foot injuries are key to preventing ulcer formation. Daily foot inspection by the patient (or a caretaker if the patient lacks sufficient visual acuity or mobility to perform the examination) is the cornerstone of proper foot care. Gentle cleansing with soap and water, followed by the application of topical moisturizers, helps to maintain healthy skin that can better resist breakdown and injury (*Lipsky and et al.*, 2006).

As Prevention is much better than therapy, treatment should begin with patient education and followed by deforming the causative factor for ulceration. The patient should be reminded to keep blood glucose under control. Debridement of all necrotic tissue plays a fundamental role in treatment Wounds that don't heal by these conventional methods may benefit from

☐ Introduction

advanced modalities such as hyperbaric treatment, growth factors, bioengineered tissue, vacuum assisted closure (VAC), biological dressings, plastic surgery, or active topical and treatment of underlying ischemia should be considered if present (*Calhoun*, 2002).