Surface Modification Of Tissue Engineering Scaffold Using Laser Processing

By

Gamal Amin Abdel Hakeam

B.D.S

A Thesis Submitted to the
National Institute of Laser Enhanced Sciences at Cairo
University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCES

In

ENGINEERING APPLICATIONS OF LASERS

Under the Supervision of

Prof. Dr.
Yehia A. Badr
National Institute of Laser
Enhanced Sciences,
Cairo University

Prof. Dr.
Mohammed A. Sharaf
Department of Chemistry
Helwan University

Assoc. Prof. Dr.
Nahed Hussein Solouma
National Institute of Laser
Enhanced Sciences,
Cairo University

NATIONAL INSTITUTE OF LASER ENHANCED SCIENCES, CAIRO UNIVERSITY GIZA, EGYPT 2011

ACKNOWLEDGMENTS

First and foremost, I feel always indebted to "Allah" the kindest, greatest and the most merciful.

My deep thanks and appreciation goes to Dr. Nahed Hussien Solouma, for her supervision, valuable contribution with knowledge and advice and also for her continuous guidance and encouragement during the course of this study. I shall never forget her assistance and continuous support.

My sincere thanks, gratitude and love goes to Dr. Mohammed Abd El Gawad Sharaf, for his exact, precise and generous supervision, his unlimited expert guidance, and his continuous encouragement. Without his support, this work would not have reached its final stages.

My sincere thanks and gratitude goes to Dr. Yehia A. Badr for his unlimited help, support and guidance during the course of the study.

At the end I would like to extend my deep thanks to all staff members of the Department of Engineering Applications of Laser in National Institute of Laser Enhanced Sciences, Cairo University for their invaluable information during my study.

At last, I would like to thank and dedicate this work to my family who gave me unconditional inspirations and supports.

ABSTRACT

Tissue engineering is a recent and promising area of research in which efforts are being made to generate tissue substitutes that can replace the human tissue in its shape and function in case of organ or tissue failure. The scaffold should have certain properties to be useful for tissue engineering purposes and allow the biological cells to divide and grow over the scaffold. From these properties, the scaffold should be fabricated from biodegradable and nontoxic polymers. The nanoscale topography of the scaffold's surface strongly influences cell function, adhesion and proliferation.

In this study, modification of PCL scaffold surfaces using specific excimer laser beam parameter produced formation of highly distributed, regular ripple on the scaffold surface with size range from 200-600 nm , the water contact angle measurement , FTIR spectroscopy , roughness and surface analysis using SEM and AFM ,biodegradation test, In vitro biological testing imaging showed enhancement of the surface roughness, surface wettability which in turn enhanced cell attachment , proliferation and the degradation rate of the scaffold .

Table of Contents

Acknowledgement	i
Abstract	11
Table of contents	111
List of figures	vi
List of Tables	V11
List of abbreviations	ix
Preface	хi
Chapter 1 Introduction	
1.1 Tissue Engineering	1
1.1.1 Objective of Tissue Engineering	1
1.1.2 Concept of Tissue Engineering	1
1.1.3 Tissue Engineering Principles	4
1.1.3.1 Cells	5
1.1.3.2 Signals (Growth Factors)	5
1.1.3.3 Cell carrier (ECM, Scaffold)	6
1.2 Properties of an Ideal Cell Carrier (Scaffold)	7
1.3 Materials Used in Tissue Engineering Scaffolds	8
1.4 Poly (ε-caprolactone) as an example of synthetic polymer	11
1.5 Scaffold Fabrication Techniques	12
1.5.1Conventional Scaffold Fabrication Techniques	12
1.5.1.1 Solvent-Casting Particulate-Leaching	13
1.5.1.2 Gas Foaming	13
1.5.1.3 Fibre Meshes/Fibre bonding	13
1.5.1.4 Thermal Induced Phase Separation	14
1.5.1.5 Melt Moulding	14
1.5.1.6 Emulsion Freeze Drying	15
1.5.1.7 Solution Casting.	15
1.5.1.6 Freeze Drying.	15
1.5.2 Limitations of Conventional Scaffold Fabrication Techniques	16
1.5.3 Improved Scaffold Fabrication Techniques	17
1.5.3.1 Solid Freeform Fabrication	17
1.5.3.2 Stereolithography (SLA)	19
1.5.3.3 Fused Deposition Modeling (FDM)	21
1.5.3.4 3D Plotter	21
1.5.3.5 Phase-change Jet Printing	23
1.6 Cells-Scaffold Interface	

1.7 Surface Engineering	
1.7.1 Chemical freatments	
1.7.1.1 Silanization	
1.7.1.2 Self-assembled Monolayers	
1.7.1.3 Microcontact Printing	
1.7.2 Physical Treatments	
1.7.2.1 Langmuir–Blodgett Deposition	
1.7.2.2 Texturing	
1.7.3 Radiation Treatments	
1.7.3.1 Ion Beam Implantation	• • • • •
1.7.3.2 Laser Surface Modification	
1.8 Problem definition.	
Chapter 2 Literature Review	
Chapter 3 Materials and methods	• • • •
3.1 Introduction	
3.1 Introduction	
3.2 Materials	
3.2 Materials	
3.2 Materials 3.3 Methods 3.3.1 Scaffold Fabrication 3.3.1.1 Scaffold Fabrication by Spin-Coating	
3.2 Materials 3.3 Methods 3.3.1 Scaffold Fabrication 3.3.1.1 Scaffold Fabrication by Spin-Coating 3.3.1.2 Scaffold Fabrication by Uniaxial Compression	
3.2 Materials 3.3 Methods 3.3.1 Scaffold Fabrication 3.3.1.1 Scaffold Fabrication by Spin-Coating	
3.2 Materials 3.3 Methods 3.3.1 Scaffold Fabrication 3.3.1.1 Scaffold Fabrication by Spin-Coating 3.3.1.2 Scaffold Fabrication by Uniaxial Compression 3.3.2 Scaffold Surface Modification by Excimer Laser Systen	 1
3.2 Materials 3.3 Methods 3.3.1 Scaffold Fabrication 3.3.1.1 Scaffold Fabrication by Spin-Coating 3.3.1.2 Scaffold Fabrication by Uniaxial Compression 3.3.2 Scaffold Surface Modification by Excimer Laser System 3.3.3 Scaffold Characterization	 1
3.2 Materials 3.3 Methods 3.3.1 Scaffold Fabrication 3.3.1.1 Scaffold Fabrication by Spin-Coating 3.3.1.2 Scaffold Fabrication by Uniaxial Compression 3.3.2 Scaffold Surface Modification by Excimer Laser Systen 3.3.3 Scaffold Characterization 3.3.3.1 Scanning Electron Microscope (SEM) Imaging	 1
3.2 Materials. 3.3 Methods. 3.3.1 Scaffold Fabrication. 3.3.1.1 Scaffold Fabrication by Spin-Coating. 3.3.1.2 Scaffold Fabrication by Uniaxial Compression 3.3.2 Scaffold Surface Modification by Excimer Laser System 3.3.3 Scaffold Characterization. 3.3.3.1 Scanning Electron Microscope (SEM) Imaging 3.3.3.2 Atomic Force Microscopy (AFM) Analysis	 1
3.2 Materials. 3.3 Methods. 3.3.1 Scaffold Fabrication. 3.3.1.1 Scaffold Fabrication by Spin-Coating	
3.2 Materials 3.3 Methods 3.3.1 Scaffold Fabrication 3.3.1.1 Scaffold Fabrication by Spin-Coating 3.3.1.2 Scaffold Fabrication by Uniaxial Compression 3.3.2 Scaffold Surface Modification by Excimer Laser Systen 3.3.3 Scaffold Characterization. 3.3.3.1 Scanning Electron Microscope (SEM) Imaging 3.3.3.2 Atomic Force Microscopy (AFM) Analysis. 3.3.3.3 Differential Scanning Calorimetry (DSC). 3.3.3.4 FTIR Spectroscopy Analysis. 3.3.3.5 Water Contact Angle Measurement. 3.3.3.6 In-Vitro Degradation Test of the Scaffold.	
3.2 Materials. 3.3 Methods. 3.3.1 Scaffold Fabrication. 3.3.1.2 Scaffold Fabrication by Spin-Coating. 3.3.2 Scaffold Fabrication by Uniaxial Compression 3.3.2 Scaffold Surface Modification by Excimer Laser Systen 3.3.3 Scaffold Characterization. 3.3.3.1 Scanning Electron Microscope (SEM) Imaging 3.3.3.2 Atomic Force Microscopy (AFM) Analysis. 3.3.3.3 Differential Scanning Calorimetry (DSC). 3.3.3.4 FTIR Spectroscopy Analysis. 3.3.3.5 Water Contact Angle Measurement. 3.3.3.6 In-Vitro Degradation Test of the Scaffold. 3.3.4 Evaluation of Scaffold Biocompatibility.	
3.2 Materials 3.3 Methods 3.3.1 Scaffold Fabrication 3.3.1.1 Scaffold Fabrication by Spin-Coating 3.3.1.2 Scaffold Fabrication by Uniaxial Compression 3.3.2 Scaffold Surface Modification by Excimer Laser Systen 3.3.3 Scaffold Characterization 3.3.3.1 Scanning Electron Microscope (SEM) Imaging 3.3.3.2 Atomic Force Microscopy (AFM) Analysis 3.3.3.3 Differential Scanning Calorimetry (DSC) 3.3.3.4 FTIR Spectroscopy Analysis 3.3.3.5 Water Contact Angle Measurement 3.3.3.6 In-Vitro Degradation Test of the Scaffold 3.3.4 Evaluation of Scaffold Biocompatibility 3.3.4.1 Seeding the Scaffolds with Cells	
3.2 Materials. 3.3 Methods. 3.3.1 Scaffold Fabrication. 3.3.1.2 Scaffold Fabrication by Spin-Coating. 3.3.2 Scaffold Surface Modification by Excimer Laser System 3.3.3 Scaffold Characterization. 3.3.3 Scaffold Characterization. 3.3.3.1 Scanning Electron Microscope (SEM) Imaging 3.3.3.2 Atomic Force Microscopy (AFM) Analysis. 3.3.3.3 Differential Scanning Calorimetry (DSC). 3.3.3.4 FTIR Spectroscopy Analysis. 3.3.3.5 Water Contact Angle Measurement. 3.3.3.6 In-Vitro Degradation Test of the Scaffold. 3.3.4 Evaluation of Scaffold Biocompatibility. 3.3.4.1 Seeding the Scaffolds with Cells. 3.3.4.2 In-Vitro Biological Testing Imaging.	
3.2 Materials 3.3 Methods 3.3.1 Scaffold Fabrication 3.3.1.1 Scaffold Fabrication by Spin-Coating 3.3.1.2 Scaffold Fabrication by Uniaxial Compression 3.3.2 Scaffold Surface Modification by Excimer Laser Systen 3.3.3 Scaffold Characterization. 3.3.3.1 Scanning Electron Microscope (SEM) Imaging. 3.3.3.2 Atomic Force Microscopy (AFM) Analysis. 3.3.3.3 Differential Scanning Calorimetry (DSC). 3.3.3.4 FTIR Spectroscopy Analysis. 3.3.3.5 Water Contact Angle Measurement. 3.3.3.6 In-Vitro Degradation Test of the Scaffold. 3.3.4 Evaluation of Scaffold Biocompatibility. 3.3.4.1 Seeding the Scaffolds with Cells.	

56

Chapter 4 Results and Discussion	
4.1. SEM Results	56
4.1.1 SEM Results for Spin-coated PCL Scaffolds	56
4.1.2 SEM Results for PCL Scaffolds by Uniaxial Compression	56
4.2 Atomic Force Microscopy (AFM) Analysis	59
4.2.1 Roughness Determination	59
4.2.2 Topographical Surface Imaging	63
4.3 Differential Scanning Calorimetry (DSC)	65
4.4 FTIR	67
4.5 Water Contact Angle Measurement	70
4.6 In-Vitro Degradation Test	74
4.7 In-Vitro Biological Testing Imaging	75
3.8 Cytotoxicity Evaluation	78
Chapter 5 Conclusions and Future work	80
5.1 Conclusions	80
5.2 Future work	81
5.3 publication	
References	82

List of Figures

Figure		Page
1.1	Diagram showing the tissue engineering concept	3
1.2	Diagram showing the tissue engineering principles	3
1.3	Chemical structure of PCL	12
1.4	Schematic diagram of the 3D printing (3DP) system	20
1.5	Schematic diagram of the Stereolithography (SLA)	20
1.6	Schematic diagram of the Fused Deposition Modeling (FDM) system	22
1.7	Schematic diagram of the 3D Bioplotter system	22
1.8	Schematic diagram of phase change jet printing system	23
1.9	Interaction at the scaffold surface	24
1.10	Silane surface modification technique	27
1.11	Microcontact printing process	28
2.1	Schematic of Q-switching operation	36
2.2	Craters formed after excimer laser treatment	37
2.3	Variation of roughness with energy density per pulse	37
2.4	The plume formed on surface during laser ablation process	38
3.1	(A) Poly (ε-caprolactone) (~MW 8,000) (B) Poly (ε-caprolactone) (~MW 65,000)	41
3.2	The spin coater used for scaffold fabrication	43
3.3	Scaffold fabrication by spin-coating technique	43
3.4	(a)Diagram of the Steel Mould Used in Uniaxial Compression Technique	44
	(b)Scaffold fabrication by uniaxial compression technique	45
3.5	(a)Hydraulic Heat Controlled Piston	45
	(b)Glass Mould	45
	(c) PCL Membrane of a 0.1 mm Thickness	46
3.6	COMPEX 205 Excimer laser system used for	
	surface modifications	48
3.7	The scanning electron probe microscope	50
3.8	VEECO Dimension 3100 Atomic Force Microscopy	50
	(AFM)	
3.9	The differential scanning calorimeter	51
3.10	FTIR spectroscope	51

3.11	Contact angle formation on a solid surface	52
4.1	(A, B) SEM for the spin-coated PCL film	56
4.2	(A-D) SEM images of the unmodified PCL scaffolds	58
4.3	(A-D) SEM images of the modified PCL scaffolds	59
4.4	(a) Mean Roughness vs. No. of Pulses	60
	(b) Mean Roughness vs. Pulse Repetition Frequency	61
	(c)Mean Roughness vs. Energy Density	62
4.5	(A) the average plane roughness (Ra) of the modified surface	64
	(B) the average plane roughness (Ra) of the modified surface	64
	(C) the average plane roughness (Ra) of the modified surfaces	64
4.6	(A) Differential scanning calorimetry thermogram for the unmodified PCL	65
	(B) Differential scanning calorimetry thermogram for the modified PCL	66
4.7	(A) FTIR of unmodified PCL scaffold	68
	(B) FTIR of modified PCL scaffold	68
4.8	(A) Image of water drop for contact angle measurement on the unmodified PCL scaffold	71
	(B) Image of water drop for contact angle measurement on the modified PCL scaffold	72
4.9	(A) Contact angle for PCL unmodified scaffold(B) Contact angle for PCL modified scaffold	73
4.10	Degradation rate of unmodified and modified PCL scaffold	74
4.11	(A, B) Cell imaging after 3 days of seeding	76
4.12	(A, B) Cell imaging after 7 days of seeding	77
4.13	(A, B) Cell imaging after 14days of seeding	77
4.14	The Cell Viability for modified and unmodified PCL scaffold and controlled cells relative to optical density (O.D)	79

List of Tables

Table		Page
1.1	Polymers and cell types used in some tissue	10
	engineering applications	
1.2	Techniques of surface modifications	26
3.1	Materials used in the different stages of the study	42
3.2	(a) Laser Beam Illumination Parameters 1st case	47
	(b) Laser Beam Illumination Parameters 2nd case	47
	(c)Laser Beam Illumination Parameters 3rd case	47
4.1	(a) Mean Roughness vs. No. of Pulses	60
	(b) Mean Roughness vs. Pulse Repetition Frequency	61
	(c)Mean Roughness vs. Energy Density	62
4.2	DSC peak integrations for unmodified and modified	66
	PCL in a film form	
4.3	Characteristic infrared bands of modified PCL	69
	scaffold	
4.4	MTT Cell Viability for modified and unmodified	79
	PCL scaffold relative to controlled cells	

List of Abbreviations

Abbreviation	Meaning
TE	Tissue engineering
PCL	Polycaprolacton
PDGFs	Platelet derived growth factors
TGF-β	Transforming growth factor β
VEGF	Vascular endothelial growth factor
EGF	Epidermal growth factor
ECM	Extracellular matrix
PLLA	Poly(L.lactide)
PGA	Poly(glycolic acid)
PLGA	Poly(L.lactide) and poly(glycolic acid) copolymer
HA	Hydroxyapetite
β-ТСР	β-tricalcium phosphate
CO2	Carbon dioxide
2-D	Tow dimensional
3-D	Three dimensional
SFF	Solid freeform fabrication
CAD	Computer-aided design
CT	Computerized Tomogaraphy
MRI	Magnetic Resonance Imaging
3DP	Three Dimensional Printing
SLA	Stereolithography
FDM	Fused Deposition Modeling
<i>T</i> m	Milting temperature
Tg	Glass transition temperature
°C	Degree Celsius
h	Hour
UV	Ultra violet
RGD	Arginine-glycine-aspartate
RFGD	Radio frequency glow discharge
SAM	Self assembled monolayer
μСР	Microcontact printing
LB	Langmuir–Blodgett Deposition
LSE	Laser Surface Engineering
°K	Degree Kelvin
S	Second

Abbreviation	Meaning
Ti	Titanium
KrF	krypton fluoride
ArF	argon fluoride
RM	Resolidified material
MW	Average molecular weight
DMEM	Dulbecco's Modified Eagles Medium
SBF	Simulated body fluid
PBS	Buffer phosphate saline
r.p.m	Revolution per minute
PRF	Pulse repetition frequency
No.	Number
SEM	Scanning Electron Microscope
AFM	Atomic Force Microscopy
STM	Scanning tunneling microscopy
DSC	Differential Scanning Calorimetry
FTIR	Fourier transform infrared spectroscopy
Ra	Average plane roughness
VS.	Versus
O.D	Optical density

PREFACE

Tissue engineering (TE) is a new discipline that has made rapid advances in medical applications. TE holds promises of eliminating reoperations by using biological substitutes to solve problems of implant rejection, cross infections associated with xeno-grafts and allografts, and shortage in organ donation. Development of suitable biodegradable materials and scaffolds for seeding cells is the key of Tissue engineering. Synthetic polymers such as Polycaprolactone (PCL) are used for tissue engineering applications. PCL is highly degradable via hydrolytic mechanisms under physiologic conditions. PCL is increasingly used in tissue engineering applications due to their safety, degradability and osteoconductivity. The main disadvantage of PCL is its low cell adhesion potential. There are many methods for scaffold fabrication; chemical methods as foaming, freeze dryer, phase separation, physical methods as laser sintering, prototype machine and compression. Herein a PCL scaffold was fabricated via uniaxial compression.

The aim of this work is to modify the surface of the PCL scaffold using different laser parameters in order to increase the cell adhesion potential which greatly influences the cell proliferation and differentiation.

The thesis consists of five chapters organized as follows: An introduction to the areas related to this work is given in the first chapter. This includes a brief introduction to Tissue engineering.

In chapter two, a review to the previous work and the trials to surface modification of scaffold materials are presented. The Review covers the work conducted by researchers to modify the surface of tissue engineering scaffolds from 19... to 2011. Chapter two also presents in details the laser surface modification trials and ends with the objective of this study.

The materials used in this work together with the methods applied for surface modifications are explained in details in chapter 3.

In chapter four, the results obtained from this work are presented in details. A full discussion of these results is also presented in the same chapter.

Finally the thesis ends with a conclusion and suggestion for future work are given in chapter five which is followed by the list of references and the appendixes.

Chapter 1

Introduction

Chapter 1

Introduction

1.1 Tissue Engineering	1
1.1.1 Objective of Tissue Engineering	1
1.1.2 Concept of Tissue Engineering	1
1.1.3 Tissue Engineering Principles	4
1.1.3.1 Cells	
1.1.3.2 Signals (Growth Factors)	
1.1.3.3 Cell carrier (ECM, Scaffold)	6
1.2 Properties of an Ideal Cell Carrier (Scaffold)	7
1.3 Materials Used in Tissue Engineering Scaffolds	
1.4 Poly (ε-caprolactone) as an example of synthetic polymer	
1.5 Scaffold Fabrication Techniques	
1.5.1Conventional Scaffold Fabrication Techniques	. 12
1.5.1.1 Solvent-Casting Particulate-Leaching	
1.5.1.2 Gas Foaming	. 13
1.5.1.3 Fibre Meshes/Fibre bonding	. 13
1.5.1.4 Thermal Induced Phase Separation	14
1.5.1.5 Melt Moulding	. 14
1.5.1.6 Emulsion Freeze Drying	15
1.5.1.7 Solution Casting.	15
1.5.1.6 Freeze Drying	
1.5.2 Limitations of Conventional Scaffold Fabrication Techniques	. 16
1.5.3 Improved Scaffold Fabrication Techniques	. 17
1.5.3.1 Solid Freeform Fabrication.	17
1.5.3.2 Stereolithography (SLA)	19
1.5.3.3 Fused Deposition Modeling (FDM)	21
1.5.3.4 3D Plotter	21
1.5.3.5 Phase-change Jet Printing	23
1.6 Cells-Scaffold Interface	24
1.7 Surface Engineering	25
1.7.1 Chemical Treatments	
1.7.1.1 Silanization	27