

Ain Shams University Faculty of Engineering Department of Architecture

Virtual Reality between Theory and Manifestations

A Thesis Submitted in Partial Fulfillment of the Requirements of the Master of Science Degree in Architecture

Prepared By

Arch. Yasmin Mohsen Ismaee'l

B.Sc. Architecture- Ain Shams University 2006

Under the Supervision of:

Prof. Dr. Amr Farouk Elgohary

Professor of architecture in Architecture Department Faculty of Engineering Ain-shams University

Dr. Magdy Ibrahim

Associate professor Architecture Department Faculty of engineering Ain-shams University

Faculty of Engineering – Ain Shams University

STATEMENT

I hereby declare that all the information in this document has been obtained and presented in accordance with the academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and reinforced all material and results that are not original to this work.

Name: Yasmin Mohsen Ismaee'l ElFakahany
Signature:
Date:

ACKNOWLEDGMENTS

I would like to express my greatest thanks to my thesis supervisor, Prof. Dr. Amr Elgohary for his guidance, time and support through the process of research and writing this thesis.

I would like to thank my family, my mum specially, for her support care and love. As for my dear husband, I owe him dozens of thanks and respect for his great support, encouragement, care, patience and sacrifice during the whole period of my study. And for my son yahia, I thank him for giving me such energy to complete my study like supplying an old toy with new batteries.

I would also like to thank my friends, my colleagues and mentors at ECG, for their encouragement and help.

Yasmin Mohsen Ismaee'l El-Fakahany

ABSTRACT

Virtual Reality (VR), sometimes called Virtual Environments (VE), has drawn much attention in the last few years. Extensive media coverage caused this interest to grow rapidly. We need to understand what are its basic principles and its open problems, as well as the introduction of the new term BIM which came out of the VR womb and evolved really rapidly in the architecture and construction field, and has formed the new VR trend in practical applications

This thesis contains a critical analysis of the way in which the Virtual reality and computer aided visualization techniques are commonly perceived and employed by practitioners in architectural field, reaching to the BIM concept that evolved from the virtual reality womb and analyzing our main case studies done by different BIM tools by the researcher and measuring the benefits and drawbacks of BIM for the architectural field and how it needs to be improved coming out with recommendation for future study concerning the thesis.

Glossary of Terms

Term	Significance
2D	Two dimensional
3D	Three dimensional
4D	Four dimensional
4D-CAD	Four dimensional Computer aided design
5D	Five dimensional
AC	alternating current
ACIS	Alan, Charles, Ian's System (Alan Grayer, Charles Lang and Ian Braid as
11015	part of Three-Space Ltd.)
ADT	AutoCAD architectural desktop
AEC	Architecture, engineering and construction
AHU	Air handling unit
APM	Automated people mover
Atari ST	Home computer released by Atari Corporation (ST refers to
110011 & 1	Sixteen/Thirty-two)
BBC	British Broadcasting computers
BBC Micro	British Broadcasting computers microcomputer system
BIM	Building information modeling
BOOM	Binocular Omni-Orientation Monitor
BU	Boston university
BUMC	Boston University Medical Center
CAD	Computer Aided design
CATIA	Computer Aided Three-dimensional Interactive Application
CAVE	the name is a recursive acronym for CAVE Automatic Virtual
	Environment
CCT	correlated color temperature
CG	Computer graphics
CPM	Critical Path Method
CRT	Cathode ray tube
CM	Construction Management
DB	Design build
DC	direct current
DHM	Dexterous Hand Master
Direct 3D	Part of Microsoft's DirectX application programming interface (API).
	Direct3D is available for Microsoft Windows operating systems
	(Windows 95 and above), it is used to render 3D graphics
DOF	Degrees of freedom
ENIAC	Electronic Numerical Integrator and Calculator
EOG	Electro-oculography

FOV Field of view

GIS Geographic information system
GPS Global positioning system

GC General Contractor
HITLab Hitlab Music Company
HMD Head Mounted Display
HMD Head Mounted Display

HRTF Head-Related Transfer- Functions

I/O devices Input/output devices

I3D Interactive the dimensional

IAI International Alliance for Interoperability
ICT Information and communication technologies

IFC Industry foundation classes
 IID Interaural intensity difference
 IML Intelligent modeling laboratory
 Immersadesk Electronic Visualization Laboratory

Department of Electrical Engineering and Computer Science and School

of Art and Design

University of Illinois at Chicago

ISO International Organization for Standardization

ITD Interaural time difference LCD liquid crystal display LED light-emitting diode

LEEP Online Education, a distance learning program at the University of

Illinois

LISP Locator/Identifier Separation Protocol

LOD Level of detail

MEP Mechanical, electrical and plumbing
MIT Massachusetts Institute of Technology

MR Minimal reality

RFP

MPH Mills Peninsula hospital

NAC Natural Area Code

NASA National Aeronautics and Space Administration

NURBS Non-uniform rational basis spline

Request for proposal

OED Oxford English dictionary
Open GL Open graphics library
PC Personal computer
PDA Personal digital assistant
PDT Project delivery team
RFI Request for information

SAGE Students Academically Gifted Education SFMOMA San Francisco Museum of Modern Art

SGI Silicon graphics Institute

SIGGRAPH Special Interest Group on GRAPHics and Interactive Techniques(annual

conference on computer graphics)

STEP Standard for Exchange of Product model data initiative

TOF Time of flight UK United kingdom UN United Nations

UNC University of North Carolina
UNC University of North Carolina
US United States of America
USNRC United states Research Council

VE Virtual environment

VPL Company founded in 1984 by Jaron Lanier

VR Virtual Reality

VRD Virtual retinal display

VRML Virtual reality markup language WBS Word breakdown structure

WOW Window on world

LIST OF CONTENTS

Abstract	I
List of Contents	II
List of Figures	III
List of Tables	IV
Introduction	V
Research problem	V
Research Goal	V
Research Methodology	VI
Research scope and limitations	VI
Research content	VII
A. Chapter one: Introduction and historical background to virtual reality	VII
B. Chapter two: Understanding the Philosophy and Theory of Virtual Reality	VII
C. Chapter Three: Using BIM in architectural projects as a direct application of Virtual Reality	VII
D. Chapter four: Conclusion	VII
Chapter One: Introduction and historical background to virtual reality	1
(1.1) Introduction	3
(1.2) The Term Virtual Reality	5
(1.3) what is Virtual Reality	5
(1.4) History of virtual reality "the origins of virtual reality"	6
(1.5) The evolution of Virtual Reality	7
(1.6) The Virtual Architect	8
(1.7) Basic definitions and terminology of virtual reality	9
(1.8) Virtual reality systems	11
(1.9) Types of Virtual Reality Systems	12
(1.9.1) Video mapping	12
(1.9.2) Immersive Systems	13
(1.9.2.1) Levels of immersion in VR systems	14

(1.9.3) Non immersive systems	14
(1.9.4) Telepresence	14
(1.10) Development of the virtual reality medium	15
(1.11) Development of the virtual reality system	18
(1.11.1) PRE-1950	18
(1.11.2) 1950-1970	19
(1.11.3) 1970-1985	19
(1.11.4) 1985-1995	20
(1.11.5) In the mid-1990s	21
(1.11.6) 1995-2000	22
(1.11.7) Post 2000	22
(1.12) Main Characteristics of Virtual Reality (I'S OF VR)	23
(1.13) Components of Virtual reality	24
(1.13.1)Hardware Components	25
(1.13.1.1)Input devices	25
(1.13.1.2)Tracking System	26
(1.13.1.3)Visual Displays	27
(1.13.1.4)Aural Display	27
(1.13.1.5)Haptic Displays	28
(1.13.1.6)Robotically operated shape displays	28
(1.13.1.7)3D Hardcopy	28
(1.13.2) Software Components	28
(1.14) The use of digital media in architecture	30
(1.15) Computers in the architectural design process	30
(1.16) Data translation and practical modeling approaches	31
(1.16.1)Data translation from CAD to VR	31
(1.16.2)A library-based approach	31
(1.16.3)A straightforward translation approach	32
(1.16.4)A database approach	32
(1.17) Conclusion of chapter One	33

Chapter Two: Understanding the philosophy and theory of virtual	35
reality and practical applications	
(2.1) Introduction	37
(2.2) Understanding Virtual Reality	39
(2.3) The concept of Virtual Reality	39
(2.4) Set of rules concerning Virtual Reality	40
(2.5) Differences between virtual and real space	40
(2.6) VR basic components	41
(2.6.1) Input devices	42
(2.6.2) Output devices	42
(2.7) Virtual reality as a tool	42
(2.8) Virtual Reality as a space	43
(2.9) Virtual Reality as an interactive, spatial, real-time medium	46
(2.10) The Merging of Theory and Practice	47
(2.11) Virtual Reality performance aids	48
(2.12) Practical applications of Virtual Reality	50
(2.12.1)Motivation to use VR	50
(2.12.2)Cities 3D Maps "Helsinki city map, Finland"	50
(2.12.3)VR Applications in Education	52
(2.12.4)Virtual Reality in Construction	53
(2.12.5) Virtual reality in Data and architectural visualization	53
(2.12.6)VR Application in Design visualization	56
(2.12.6.1) Example: Vectorial elevation	56
(2.12.7)Example: the blur building by diller + scofido whirling	58
(2.12.8)VR in Modeling, designing and planning	59
(2.12.9)VR in Training	60
(2.12.10)Application in Museums	61
(2.12.10.1) VR Theater for Mayan Exibition "Virtual Mayan Ruins"	61
(2.12.11) Field Museum	63
(2.13) Compariosn between different types of Virtual reality applications	64
(2.14) Appearance of Building Information Modeling	65