MORPHOLOGICAL AND ENVIRONMENTAL OF THE NILE RIVER (CASE STUDY REACH FOUR)

Submitted By Suzan Ahmed Mohamed Ahmed

B.Sc. of (Civil), Faculty of Engineering, Cairo University, 1997

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science
Department of Environmental Engineering Science

Under The Supervision of:

1-Dr. Noha Samir Donia

Associate Prof. in Head of Department of Environmental Engineering Science - Institute of Environmental Studies & Research Ain Shams University

2-Dr. Ahmed Mostafa Ahmed Moussa

Associate Prof. in Nile Research Institute (NRI) National Water Research Center (NWRC) Ministry of Water Resources and Irrigation

3-Dr. Reham Refaat Mohammed

Associate Prof. in Department of Environmental Mass and Communication Science - Institute of Environmental Studies & Research Ain Shams University

MORPHOLOGICAL AND ENVIRONMENTAL OF THE NILE RIVER (CASE STUDY REACH FOUR)

Submitted By Suzan Ahmed Mohamed Ahmed

B.Sc. of (Civil), Faculty of Engineering , Cairo University, 1997

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science

Department of Environmental Engineering Science Institute of Environmental Studies and Research Ain Shams University

2014

APPROVAL SHEET

MORPHOLOGICAL AND ENVIRONMENTAL OF THE NILE RIVER

(CASE STUDY REACH FOUR)

Submitted By

Suzan Ahmed Mohamed Ahmed

B.Sc. of (Civil), Faculty of Engineering, Cairo University, 1997

This thesis Towards a Master Degree in Environmental Science Has been Approved by:

Name Signature

1-Prof. Dr. Medhat Saad Aziz

Director of Nile Research Institute (NRI) National Water Research Center (NWRC) Ministry of Water Resources and Irrigation

2-Dr. Ashraf Mohammed El-Mostafa

Associate Prof. in Department of Irrigation and Hydraulics, Faculty of Engineering Ain Shams University

3-Prof. Dr. Noha Samir Donia

Prof. and Head of Department of Environmental Engineering Science Institute of Environmental Studies & Research Ain Shams University

4-Dr. Ahmed Mostafa Ahmed Moussa

Associate Prof. in Nile Research Institute (NRI) National Water Research Center (NWRC) Irrigation and Water Resources Ministry

2014

التغيرات المورفولوجية والبيئية لنمر النيل (حالة الدراسة الحبس الرابع)

رسالة مقدمة من الطالبة سوزان أحمد محمد أحمد بكالوريوس هندسة (مدنى) — كلية الهندسة — جامعة القاهرة — ١٩٩٧

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية

> قسم العلوم الهندسية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

> > 7.15

صفحة الموافقة على الرسالة التغيرات المور فولوجية والبيئية لنسر النيل (حالة الدراسة الحبس الرابع)

رسالة مقدمة من الطالبة
سوزان أحمد محمد أحمد
بكالوريوس هندسة (مدنى) – كلية الهندسة – جامعة القاهرة – ١٩٩٧
لاستكمال متطلبات الحصول علي درجة الماجستير
في العلوم البيئية
قسم العلوم الهندسية البيئية

وقد تمت مناقشة الرسالة والموافقة عليها:

اللجنة: التوقيع

۱ – ۱.د/مدحت سعد عزیز

مدیر معهد بحوث النیل ـ المرکز القومی لبحوث المیاه وزارة الموارد المائیة والری

٢ - د./أشرف محمد المصطفى

أستاذ مساعد بقسم الرى والهيدروليكا _ كلية الهندسة جامعة عين شمس

٣- ١.د/نهى سمير دنيا
 أستاذ ورئيس قسم العلوم الهندسية البيئية _ معهد الدراسات والبحوث البيئية
 جامعة عين شمس

٤ - د./أحمد مصطفى أحمد موسى

أستاذ مساعد بمعهد بحوث النيل ــ المركز القومى لبحوث المياه وزارة الموارد المائية والرى

التغيرات المورفولوجية والبيئية لنسر النيل (حالة الدراسة الحبس الرابع)

رسالة مقدمة من الطالبة سوزان أحمد محمد أحمد بكالوريوس هندسة (مدنى) – كلية الهندسة – جامعة القاهرة – ١٩٩٧

لاستكمال متطلبات الحصول على درجة الماجستير في العلوم البيئية قسم العلوم الهندسية البيئية

تحت إشراف :-

۱ - د./نهی سمیر دنیا

أستاذ مساعد بقسم العلوم الهندسية البيئية _ معهد الدراسات والبحوث البيئية جامعة عين شمس

٢ - د./أحمد مصطفى أحمد موسى

أستاذ مساعد بمعهد بحوث النيل ـ المركز القومى لبحوث المياه وزارة الموارد المائية والرى

۳ – د./ریهام رفعت محمد

مدرس بقسم العلوم التربوية والإعلام البيئى ــ معهد الدراسات والبحوث البيئية جامعة عين شمس

ختم الإجازة :

أُجيزَة الرسالة بتاريخ / /٢٠١٤

موافقة مجلس المعهد / ٢٠١٤/ موافقة مجلس الجامعة / ٢٠١٤/

ABSTRACT

In terms of the importance of the Nile River to Egypt, this research was initiated in order to investigate the flow and sediment of the river, numerically. The fourth reach was chosen to be investigated. 90 cross sections of 1982 were compared to 2004 along the fourth reach. The deposition and scour during this period was calculated, based on the water level of maximum discharge 181 M.m³/day. The comparison indicated that deposition occurred more frequent than erosion. The numerical model GSTARS 2 was calibrated and verificated for two modes (i.e. water flow and sediment). The model was calibrated using the surveyed cross-sections at 1982 and the inflow discharge at downstream Assiut Barrage and along the reach (i.e. 37.7, 70, 140 and 181 M.m³/day). The results of the model were good agreements with the field measurements. The model was verificated using the surveyed crosssections at 1997 with the average monthly records discharge at different times (every ten days) which were measured at the downstream of Assiut barrage of the period 1997 to 2004. The model was used to predict the locations of bank overflow and the inundated regions in case of future inflow (i.e. 350 M.m³/day). Confident with the calibration and verification results, the model was applied to calculate the expected cross sections.

List of Contents

AbstractI
List of ContentsII
List of TablesV
List of FiguresVI
Chapter (I) Introduction
I.1. Importance of rivers1
I.2. General Overview to Nile river2
I.3. Human interventions to rivers4
I.4. Impacts of the Aswan High Dam4
I.5. Problem definition5
I.6. Study objectives6
I.7. Planned methodology6
I.8. Thesis layout7
Chapter (II) Literature Review
Chapter (II) Literature Review II.1. Fluvial systems
II.1. Fluvial systems 10
II.1. Fluvial systems

Chapter (III) Description of the Study Area and Future Requirements 3.1. Site description------42 3.2. Assembled data ------ 44 3.2.a. Hydrological data ------44 3.2.b. Emergency discharge ------48 3.2.c. Geometric data------48 3.2.d. Equations of bed-material sediment load ------ 49 3.2.e. Roughness coefficients ----- 56 3.3. Analyzing the assembled data ----- 56 3.4. Morphological changes occurred during the past decades (1982-1997-2004)-----56 3.5. Set future navigation requirements------61 3.6. Comments------62 Chapter (IV) Model Calibration and Verification 4.1. Model description------63 4.2. Capabilities of gstars 2.0------63 4.3. The model limitations ----- 64 4.4. Water surface profile computation ----- 64 4.5. Gstars calibration ----- 65 4.5.1. Flow model calibration------65 4.5.2. Morphology mode calibration------66 4.5.3. Sediment routing equation ----- 66 4.6. Gstars verification ------ 68 4.6.1. Flow model verification ----- 69 4.6.2. Morphology model verification ----- 79

^			
Со	иt	OH	1+0
1,0	บ	611	II DE

4.7. Gstars verification	84
4.7.1. Flow model verification	84
4.7.2. Morphology model verification	84
Chapter (V) Results Analysis and Discussion	
5.1. Cross sections comparison (1982- 2004)	87
5.2. Deposition and scour values during the period	
from 1982 to 2004	98
5.3. Comparison overview	106
Chapter (VI) Model Application and Bank Overtopping	
6.1. Gstars application at 350 mm3/day	107
6.2. Gstars application to future discharge	108
6.3. Discussion	123
6.4. Model operation for prediction	127
Chapter (VII) Conclusions and Recommendations	
7.1. Conclusions	134
7.2. Recommendations	135
Summary	136
Defenences	120

List of Tables

Tables name	Page No
Table (3.1) Estimated water levels at the different stations	46
Table (3.2) Estimated water levels during the emergency disch	arge-48
Table (4.1) The error percentage for water levels at each	
station for the discharge 37.7 M.m3/day	70
Table (4.2) The error percentage for water levels at each	
station for the discharge 70 M.m3/day	71
Table (4.3) The error percentage for water levels at each	
station for the discharge 140 M.m3/day	72
Table (4.4) The error percentage for water levels at each	
station for the discharge 181 M.m3/day	73
Table (4.5) Manning values (Q = 37.7 M.m3/day)	77
Table (4.6) Manning values for natural streams and	
excavated channels	79
Table (5.1) Erosion and sedimentation quantity for cross	
sections	101
Table (6.1) Inundated areas on left and right banks	124
Table (6.2) Areas of submerged islands	125
Table (6.3) Location of affected buildings along the risk	
regions	126
Table (6.4) Manning values used in the mathematical model	
For $Q = 350 \text{ M.m}^3/\text{day}$	128

List of Figures

Figure Name	Page No.
Figure (I-1) Layout of Nile River	3
Figure (I- 2) Layout of Nile River through Egypt	3
Figure (II-1) Erosion, transport, and sedimentatio in a fluvial S	System 11
Figure (II-2) Adjustment in river width, depth and flow	
velocity	12
Figure (II-3) Examples of sinuous and meandering rivers	15
Figure (II-4) River classification	17
Figure (II-5) Different types of bed forms	18
Figure (II-6) Bars Formation in Rivers	21
Figure (II-7) Riverbed degradation	22
Figure (II-8) Effects of dams downstream of alluvial	
reaches	25
Figure (II-9) Schematic of headcut migration	26
Figure (II-10) Schematic features of riverbed aggradation	32
Figure (II-11) Braiding and Meandering	34
Figure (II-12) Bed Characteristics of the Tanana River in	
Alaska (After Buska et al., 1984)	35
Figure (3.1) Location of the Fourth Reach	43
Figure (3.2) Schematic Diagram Showing the Water Gauges L	ocations
along the Fourth Reach	45
Figure (3.3) Cross-Section at km (555.00 from A.D) for	
Years 1982, 1997, 2004	57
Figure (3. 4) Cross-Section at km (592.00 from A.D) for	
Years 1982, 1997, 2004	57
Figure (3. 5) Cross-Section at km (604.00 fr	rom A.D)
for Years 1982, 1997, 2004	58

Figure (3. 6) Cross-Section at km (612.00 from A.D) for	
Years 1982, 1997, 2004	-58
Figure (3. 7) Cross-Section at km (634.00 from A.D) for	
Years 1982, 1997, 2004	59
Figure (3. 8) Cross-Section at km (726.00 from A.D) for	
Years 1982, 1997, 2004	59
Figure (3. 9) Cross-Section at km (742.00 from A.D) for	
Years 1982, 1997, 2004	60
Figure (3. 10) Cross-Section at km (796.00 from A.D) for	
Years 1982, 1997, 2004	60
Figure (3. 11) Cross-Section at km (952.00 from A.D) for	
Years 1982, 1997, 2004	61
Figure (4.1) Model output results Corresponding to the Discharge 37	.7
M.m3/day at 1982	74
Figure (4.2) Model output results Corresponding to the Discharge 70)
M.m3/day at 1982	74
Figure (4.3) Model output results Corresponding to the Discharge 14	0
M.m3/day at 1982	75
Figure (4.4) Model output results Corresponding to the	
Discharge 181 M.m3/day at 1982	75
Figure (4.5) Cross-Section at km (556.00) from A.D	80
Figure (4.6) Cross-Section at km (634.00) from A.D	80
Figure (4.7) Cross-Section at km (726.00) from A.D	81
Figure (4.8) Cross-Section at km (796.00) from A.D	81
Figure (4.9) Cross-Section at km (808.00) from A.D	82
Figure (4.10) Cross-Section at km (852.00) from A.D	82
Figure (4.11) Cross-Section at km (889.00) from A.D	83

Figure (4.12) Cross-Section at km (910.00) from A.D	83
Figure (4.13) Cross-Section at km (558.00) from A.D	85
Figure (4.14) Cross-Section at km (800.00) from A.D	85
Figure (4.15) Cross-Section at km (863.00) from A.D	86
Figure (4.16) Cross-Section at km (910.00) from A.D	86
Figure (5. 1) Cross-Section at km (546.00)	88
Figure (5. 2) Cross-Section at km (550.00)	88
Figure (5.3) Cross-Section at km (556.00)	89
Figure (5. 4) Cross-Section at km (564.00)	89
Figure (5. 5) Cross-Section at km (584.00)	90
Figure (5. 6) Cross-Section at km (592.00)	90
Figure (5. 7) Cross-Section at km (616.00)	91
Figure (5. 8) Cross-Section at km (628.00)	91
Figure (5.9) Cross-Section at km (646.00)	92
Figure (5.10) Cross-Section at km (688.00)	92
Figure (5.11) Cross-Section at km (716.00)	93
Figure (5.12) Cross-Section at km (744.00)	93
Figure (5.13) Cross-Section at km (779.00)	94
Figure (5.14) Cross-Section at km (824.00)	94
Figure (5.15) Cross-Section at km (852.00)	95
Figure (5.16) Cross-Section at km (872.00)	95
Figure (5.17) Cross-Section at km (944.00)	96
Figure (5.18) Cross-Section at km (952.00)	96
Figure (5.19) the deposition and scour at km (944.00)	
from A.D	99
Figure (5.20) the deposition and scour at km (722.00)	
from A.D	99

Figure (5.21) the deposition and scour at km (546.00)	
from A.D	100
Figure (5.22) the deposition and scour at km (594.00)	
from A.D	100
Figure (6.1) Inundated regions from km 547 To 552	
from A.D	108
Figure (6.2) Inundated regions from km 553 To 556	
from A.D	109
Figure (6.3) Inundated regions from km 560 To 562	
from A.D	109
Figure (6.4) Inundated regions from km 563 To 567	
from A.D	110
Figure (6.5) Inundated regions from km 575 To 578	
from A.D	110
Figure (6.6) Inundated regions from km 579 To 582	
from A.D	111
Figure (6.7) Inundated regions from km 583 To 586	
from A.D	111
Figure (6.8) Inundated regions from km 587 To 589	
from A.D	112
Figure (6.9) Inundated regions from km 590 To 594	
from A.D	112
Figure (6.10) Inundated regions from km 595 To 598	
from A.D	113
Figure (6.11) Inundated regions from km 599 To 601	
from A D	113