

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

CONTRASTING REDOXIMORPHIC PATTERNS AS A FUNCTION OF SOIL PEDOGENIC PROCESS IN EL FAYOUM AREA, EGYPT

T'ON OF

By

Yaser Mahmoud Abbas Mohamed Mousa B.Sc., Agric. Sci. (Soils), El Fayoum Brnach, Cairo

University, 1991

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Agricultural Sciences

IN

SOIL SCIENCE

Soils and Water Department
El Fayoum Faculty of Agriculture
Cairo University

CONTRASTING REDOXIMORPHIC PATTERNS AS A FUNCTION OF SOIL PEDOGENIC PROCESS IN EL FAYOUM AREA, EGYPT

By Yaser Mahmoud Abbas Mohamed Mousa

THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Agricultural Sciences IN SOIL SCIENCE

Soils and Water Department
El Fayoum Faculty of Agriculture
Cairo University

Supervised by:

1- Prof. Dr. El Sayed Abd El Hay Khater

Professor of Soil Science and Vice Dean, Faculty of Agriculture at El Fayoum, Cairo Univ.

Signature: E. A. Khater

2-Dr. Ahmed Abdalah Mohamed Al Sharif

Prime Researcher of Soil Science. Soils. Water and Environment Institute. Agricultural Research Center, Ministry of Agriculture, Giza.

Signature: Ahmad Abd Alla Al-Sharif

A FUNCTION OF SOIL PEDOGENIC PROCESS IN EL FAYOUM AREA, EGYPT

By Yaser Mahmoud Abbas Mohamed Mousa

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Agricultural Sciences

IN SOIL SCIENCE

Soils and Water Department
El Fayoum Faculty of Agriculture
Cairo University

Approved by:

1- Prof. Dr. Hassan Hamza Abbas

Professor of Soil Science, Soils Department, Faculty of Agriculture, Zagazig Univ.

Signature: H. H. Abba

2- Prof. Dr. El Sayed Abd El Hay Khater

Professor of Soil Science and Vice Dean, Faculty of Agriculture at El Fayoum, Cairo Univ.

Signature: E. A. Khater

3- Prof. Dr. Nabil Ali Bayoumi

Professor of Soil Science, Soils Department, Faculty of Agriculture, Minufiya Univ.

Signature: Bayounc N. A.

ACKNOWLEDGEMENT

First, My Unlimited Thanks To God

I wish to express my deep gratitude to *Prof. Dr. El Sayed Abd El Hay Khater*, Professor of Soil Science and Vice Dean, Soils and Water Department, Faculty of Agriculture at El Fayoum, Cairo University for his supervision, suggesting the problems, careful guidance, useful advice and constructive criticism throughout this work.

Sincere thanks and appreciation are due to *Dr. Ahmed Abdalah Mohamed Al Sharif*, Prime Researcher of Soil Science, Soils, Water and Environment Institute, Agricultural Research Center, Ministry of Agriculture, Giza for his supervision, encouragement, generous assistance and useful advice throughout this study.

Thanks are also extended to all the *Staff members of Soils and Water Department*, Faculty of Agriculture at El

Fayoum, Cairo University for their support, cooperation and making the needed facilities available.

ABSTRACT

This study aims at identifying iron transformations as a result of preferential oxidation-reduction of iron forms (redoximorphic features) in the presence of a seasonally high water table at El Fayoum depression. The obtained data are suggested in the following items.

In general, the oxidized soil horizons are characterized by a very dark grayish brown to very pale brown, coarse sub-angular to medium angular blocky and slightly hard, may be due to the dominance of ferric oxides. Whereas, the reduced ones have a dark gray to pale yellow, structureless or massive and hard to very hard, due to the dominance of ferrous oxides. The mottled zones are yellowish brown (jarosite) in the upper stratum, pale yellow for iron oxide in the middle portion, reddish (hematite) for the upper fringes of ground-water and yellowish (goethite) at the greater depth.

It was noticed that the yellow zones have less clay than the gray ones of the same horizon, may be due to the ferrous oxides are occurred in the colloidal particles of clay. Soil bulk density value tends to decrease in the oxidized state as compared to those have a reduction phase, since the influence of ferric form was enhanced the coagulation of particles and create a renewed stable aggregates that accompanied by large pores and improve the soil aeration and permeability. Whereas, the gray zones (reduced) have smaller pores, resulting slowly oxygen diffusion in the wet periods, Fe oxides can be allocated to goethite and a much lower Fe.

Soils subjected to oxidized state, in general, are free from sodicity, while the reverse is true for those exhibited reduced one during the continuos wetness. X-ray diffraction patterns show that pyrite is more abundant in reduced zones and suggested the youngest age of that soil, the reverse is true for oxidized ones, where hematite, jarosite and goethite are dominated. Also, iron bearing minerals (jarositte, hematite and goethite) are considered as new formations, mostly derived due to the weathering of ferromagnesium minerals (hornblende, augite and biotite) or oxidation of iron in clay minerals under the arid environments of El Fayoum region.

The main micromorphic iron features are represented by skeletal allogenic (inherited grains from the parent material), pedogenic (in situ, clay minerals or calcareous fine crystals, mostly mixed with amorphous iron compounds as patches, mo-, ma- and in-sepic plasmic fabrics), ortihic concretions, hypoferri-argillans (neo- or quassi-ferrans, especially in the gley horizons), infillings and crystallite forms. The dominance of pyrite in lacustrine and fluvio-lacustrine deposits, reflects their enrichment in SO₄⁻ and H₂S and better environments for transforming the amorphous ferric

oxide (Fe₂O₃) to pyrite (FeS₂) during the periodic reduction of immobile ferric iron to mobile ferrous iron.

Redox potential figures varied from +453 (oxidized zone) to -165 mv (reduced one), the well-aerated soil had a positive value of (+453 to +307 mv), while water-logged ones had redox potentials as negative as -25 to -165 mv. The faster and greater decrease in oxidation-reduction potential in the water-logged zones may be attributed to the smaller oxygen reservoir as can be expected from their lower state of soil aggregation and air porosity. It was noted that the latter decrease in redox potential was paralleled by a significant reduction of iron oxides, which reflected by a relatively high intensity peak of pyrite in the x-ray diffraction.

The comparatively high of Fe³⁺ (crystalline form) concentration in the oxidized zones above the pyritic substratum, suggests that the rate of pyrite oxidation is higher in young soils than in the old ones. This is probably due to a relatively rapid lowering of the ground-water, and in turn easy access of air to the pyritic zone during the early stages of soil development.

As for soils developed on the shale deposits, the remaining oxidized phase may be attributed to extremely adverse conditions for microorganisms, high stability of ferric oxides and nearly absence of pyrite. The occurrence of jarosite accounts as a part for the presence of the relatively large amounts of ferric oxides in the substratum, may be enhanced by the relatively high pH and low concentrations of sulfate and potassium.

Key words: Soils of El Fayoun depression, iron forms, oxidation-reduction potential, mineralogy of iron oxides and factors controlling redoximorphic features.

CONTENTS

1- INTRODUCTION	<i>Page</i> 1
2- REVIEW OF LITERATURE	. 3
2.1. Redoximorphic definition	. 3
2.2. Source of iron oxide forms	5
2.3. Redoximorphic as related to soil properties	. 7
2.3.1. Soil colour	7
2.3.2. Soil structure	. 9
2.3.3. Soil consistence	. 9
2.3.4. Particle size distribution	. 10
2.3.5. Cation exchange capacity (CEC)	11
2.3.6. Mineralogical composition	. 11
2.3.7. Soil micromorphology	12
2.3. Aluminum substitution in goethite structure	13
1- MATERIALS AND METHODS	15
3.1. Materials	15
3.2. Methods of analysis	17
4- RESULTS AND DISCUSSION	19
4.1. Soil morphology	20

		Page
	4.1.1. Soil colour	. 20
	4.1.2. Soil structure	. 22
	4.1.3. Soil consistence	. 23
	4.2. Soil physical properties	. 24
	4.2.1. Soil texture	. 24
	4.2.2. Soil bulk density	. 26
	4.2.3. Soil porosity and pore size distribution	. 27
	4.3. Soil chemical properties	. 29
	4.3.1. Calcium carbonate content	. 29
	4.3.2. Soil salinity and alkalinity	30
	4.3.3. Cation exchange capacity and exchangeable cations.	31
	4.4. Soil mineralogy	. 33
	4.4.1. X-ray diffraction analysis	. 33
	4.4.1.1. Clay fraction	. 33
	4.4.1.2. Iron fractions	. 37
	4.4.1.3. Aluminum substitution in goethite structure	. 39
	4.5. Amorphous and crystalline iron oxides	. 41
	4.6. Soil micromorphology	. 42
,	4.6.1. Detailed descriptions of iron forms	43
	4.6.1.1. Coarse grains (skeletal allogenic forms)	45
	4.6.1.2. Fine material (pedogenic forms, in situ)	48
	4.6.1.3. Pedofeatures	49

		P	age
4.6.1.	3.1. Nodules	•••••	49
4.6.1.	3.2. Coatings	•••••	50
4.6.1.	3.3. Infillings	•••••	51
4.6.1.	3.1. Crystalline features	•••••	51
4.7.	Oxidation and reduction forming processes	• • • • • •	52
5- S	UMMARY AND CONCLUTION	• • • • •	56
5.1. S	oil morphology	•••••	57
5.2. S	oil physics	•••••	58
5.3. S	oil chemistry	•••••	59
5.4. S	oil mineralogy	• • • • • • • • • • • • • • • • • • • •	59
5.5. A	luminum substitution in goethite structure	•••••	61
5.6. A	morphous and crystalline iron oxides	• • • • • •	61
5.7. S	oil micromorphology	• • • • • • •	64
5.8. O	exidation and reduction forming processes	•••••	66
6- R	EFERENCES	(61
7- A	RABIC SUMMARY		

LIST OF TABLES

Table No.	Page
1 The main soil morphological features of the studied soil sites	i . 22
2 Gypsum %, calcium carbonate % and particle size distribution of the studied soil profiles	e
3 Moisture content, bulk density, real density, pore size distribution and hydraulic conductivity of the	e e
studied soil sites	. 27
4 Chemical analysis of soil paste extract of the	20
 studied soil profiles. Cation exchange capacity, exchangeable cations and exchangeable sodium percent of the studie 	s d
soil profiles 6 Semi quantitative analysis of the clay fractions separated from the selected soil profil layers	5
7 Dimensoinless peak area for the goethite 110 peak and Al substitution in goethite in the selected so	c il
profile layers	n
conditions of the studied soil profiles	. 42
9 Main micromorphological features of the iron	
forms in the studied soil profiles	44