Sublingual versus Oral Misoprostol for Induction of Labour in Prelabour Rupture of Membranes at Term: RCT□

Thesis

Submitted for Partial Fulfillment of Master Degree In **Obstetrics and Gynecology**

By

Amira Zohier Mohammed

M.B.,B.Ch. 2010,

Faculty of Medicine, Ain Shams University Resident of Obstetrics and Gynecology, Zayed Specialized Hospital

Under Supervision of

Prof. Ihab AbdEl-Fattah

Professor of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

Dr. Amr Helmy Yehia

Ass. Professor in Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

Dr. Reda Mokhtar Kamal

Lecturer in Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to Prof. That AbdEl-Fattah, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to Dr. Amr Helmy Yehia, Ass. Professor in Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I cannot forget the great help of Dr. Reda Mokhtar Kamal, Lecturer in Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his invaluable efforts, tireless guidance and for his patience and support to get this work into light.

Last but not least, I dedicate this work to My family, specially My mother, whom without their sincere emotional support.

Contents

Subjects Page	
List of Abbreviations	I
List of Tables	III
List of Figures	IV
 Protocol 	
• Introduction	1
Aim of the Work	5
• Review of Literature	
- Chapter I: Misoprostol	6
- Chapter II: Premature Rupture of Membrane	es43
- Chapter III: Induction of Labor	73
Patient & Methods	99
• Results	111
• Discussion	122
• Summary	131
• Conclusion	136
Recommendations	137
• References	138
Arabic summary	

List of Abbreviations

ACOG: American College of Obstetricians and

Gynecologists

AFP : Alpha-fetoprotein

APH : Antepartum hemorrhage

cAMP : Cyclic adenosine 3, 5 monophosphate

DAO: Diamine oxidase

ECM : Extracellular matrix

ELISA : Enzyme-linked immunosorbent assay

FDA : Food and Drug Administration

FHR: Fetal heart rate

IDI : Induction-delivery interval

IGFBP-1: Insulin-like growth factor binding protein 1

IOL : Inducation of labour

IX : Glossopharyngeal nerve

MMPs : Matrix metalloproteinases

MPA : Metabolite misoprostol acid

onfFN: Oncofetal or fetal fibronectin

PGE: Being a prostaglandin E

PGE2 : Prostaglandin E2

PROM: Premature rupture of membranes

PTT : Partial thrombin time

RCT: Randomized controlled trial

🕏 Tist of Aberrations 🗷

SLE : Systemic lupus erythematosus

TENS: Transcutaneous nerve stimulation

TIMPs: Tissue inhibitors of MMPs

VI : Abducens nerve

VII : Facial nerve

WHO: World Health Organization

XII : Hypoglossal nerve

List of Tables

Table No.	Title	Page
1	Effects of fasting, antacid and high fat meal on the pharmacokinetics of misoprostol	14
2	Doses of misoprostol use	33
3	Bishop score	39
4	Bishop Score	78
5	Modified Bishop Scoring System	78
6	Characteristics of the study population	111
7	Obstetric history of the study population	113
8	Main outcome measures in both study groups	114
9	Fetal outcome in both study groups	117
10	Incidence of adverse outcomes in both study groups	118
11	Kaplan-Meier analysis for the time to vaginal delivery	120

List of Figures

Figure No.	Title	Page
1	Countries where misoprostol is approved	7
2	Chemistry of misoprostol	7
3	Pharmacokinetics of different routes of administration of misoprostol	19
4	The mechanism of misoprostol in impairing female reproductive system innate immunity	25
5	Proposed mechanism of misoprostol teratogenicity	28
6	Left facial palsy in the 1-month-old baby	30
7	Safe single doses of vaginal misoprostol for producing uterine contractions at various gestations.	34
8	Apgar Score	42
9	Layers of amnion and chorion	47
10	pH of vaginal discharge using nitrazine paper	60
11	Ferning of amniotic fluid	62
12	Cervical ripening balloon	84

🕏 List of Figures 🗷

Figure No.	Title	Page
13	Cervical ripening balloon	85
14	Hygroscopic dilators dilapan	86
15	Stripping of the Membranes	87
16	Amniohook	88
17	Amniotomy	89
18	Mifepristone	92
19	Flow chart showing the study flow.	112
20	Mode of delivery in both study groups.	115
21	Additional oxytocic usage in both study groups.	116
22	Need for NICU admission in both study groups.	117
23	Incidence of adverse maternal outcomes in both study groups.	119
24	Kaplan-Meier curves for the time to vaginal	121
	delivery in either study group. Hazard ratio,	
	1.86; 95% CI, 1.42 to 2.44.	

INTRODUCTION

Induction of labour is extensively used all over the world in cases in which continuation of pregnancy is hazardous to the mother and/or her fetus. In 2004 and 2005, one in every five deliveries in the United Kingdom was induced (*NICE clinical guidelines*, 2008). Unpublished data from the WHO Global Survey on Maternal and Perinatal Health, which included 373 health-care facilities in 24 countries and nearly 300 000 deliveries, showed that 9.6% of the deliveries involved labour induction. Overall, the survey found that facilities in African countries tended to have lower rates of induction of labour (lowest: 1.4% in Niger) compared with Asian and Latin American countries (highest: 35.5% in Sri Lanka) (*WHO Global Survey on Maternal and Perinatal Health*, 2010).

Inducing labour when the cervix is ripe is not difficult, but complications increase significantly when the cervix is not ripe. There is a plethora of techniques available for induction of labour. However, prostaglandins remain the single most effective means of achieving cervical ripening and inducing labour when combined with a judiciously timed amniotomy, providing good clinical

effectiveness and patient satisfaction (Alfirevic, 2005).

Prostaglandin E2 is registered for labour induction in many countries. However, it is expensive in developing countries and, because it is sensitive to temperature changes, it needs to be kept under refrigeration. In settings with high average parity, an induction regimen using only oxytocin without prostaglandin E2 is potentially dangerous. In Assiut University Hospital, for example, oxytocin was still the most widely used method of induction (62.9 %) in 1999; prostaglandin E2 was used in only 6.5% of cases. In such settings there is an urgent need for an affordable drug optimize Misoprostol induction to outcomes. prostaglandin E1 analogue) has several potential advantages: it is stable at room temperature, it is relatively inexpensive and it can be given via several routes (oral, vaginal, sublingual, buccal). These properties make misoprostol an ideal agent for induction of labour, particularly in settings where the use of prostaglandin E2 is not possible owing to lack of availability, facilities for storage, or financial constraints. Since the use of a powerful uterotonic such as misoprostol can lead to adverse maternal and perinatal effects, it is important to review the effectiveness and the side-effects of oral (Alfirevic and Weeks, 2006) and sublingual (Hofmeyr and Gulmezoglu,

2003) misoprostol use in cervical ripining and induction of labour. Misoprostol is easily stored at room temperature and has only a few systemic side effects (Muzonzini and Hofmeyr, 2004).

There is no general agreement about the ideal management of the women with pre-labour rupture of membranes (PROM). Both expectant management and induction of labour are currently practiced in modern obstetrics (*Svigos et al.*, 2000).

The usual options for induction of labour in women with PROM are medical methods including oxytocin, prostaglandins and combination of both. Oxytocin only affects uterine contractions so is less likely to be effective in presence of unfavourable cervix. Prostaglandins especially PGE2 have been used successfully for cervical ripening and for induction of labour since early 1970's (*Crane et al., 2003*).

Misoprostol, which is a methyl ester of prostaglandin E1 is a recent addition to the list of the prostaglandins. It was originally marketed for the treatment of duodenal ulcer but also has uterotonic properties and is useful for cervical ripening (*Margulies et al.*, 1992).

It is not licensed at present for the induction of

labour, but various groups successfully used the agent by oral or sublingual routes for the induction of labour on the basis of its effect on uterine contractions (*Hofmeyr and Gulmezoglu*, 2003; *Alfirevic*, 2005).

AIM OF THE WORK

1- Research hypothesis:

In women presented with premature rupture of membrane at term, Sublingual Misoprostol is not superior to oral Misoprostol for induction of labour.

2- Research question:

In women presented with premature rupture of membrane at term, Is sublingual Misoprostol more efficient and safe than oral Misoprostol for induction of labour?

3- Research aim:

The study aim to asses the safety and efficacy of sublingual versus oral Misoprostol to induce labour in women presented by premature rupture of membrane at term.

1. PROTOCOL OUTLINE

1.1 TITLE

Sublingual versus Oral Misoprostol for Induction of Labour in Women Presenting by Prelabour Rupture of Membranes at Term.

1.2 STUDY SITE

Ain Shams University Maternity Hospital.

1.3 Study phase

This study will be Randomized Controlled Trial (RCT).

2. OUTCOME MEASURES

2.1 PRIMARY OUTCOME

Achievement of successful vaginal delivery within 24 hours.

2.2 SECONDRY OBJECTIVES

Maternal outcome measures including: Induction delivery interval(time from start of medication till delivary), tachysystole (at least 6 contractions in 10 minutes during two consecutive 10 minutes), hyperstimulation (presence of tachysystole or prolonged

contraction > 2 minutes, accompanied with non-reassuring fetal heart pattern), need for analgesia, need for labor augmention by oxotocin, conversion to caesarean section, nausea, vomiting, pyrexia after administration of agent and in first post natal day, mode of delivery.

Fetal outcome measures including: Apgar score at one and five minutes of birth, admission to neonatal intensive care unit (NICU) and perinatal death.

3. STUDY DESIGN

It is approspective, non-blinded randomized control study, comparing the safety and efficacy of sublingual with oral misoprostol for labor induction.

3.1 POPULATION

The current study will be conducted at Ain-Shams University Maternity Hospital during the period between March 2016 and December 2016.262 pregnant women planned for induction of labour will be recruited in this study according to inclusion and exclusion criteria.

3.1.1. Inclusion Criteria

- 1. Age: 18 35.
- 2. Live singleton pregnant women at term