KINETIC CHANGES OF HIGH-SENSITIVITY CARDIAC TROPONIN T IN ACUTE CORONARY SYNDROME WITH CHRONIC KIDNEY DISEASE

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

*By*Noha Fathallah El-Shaer

M. B., B. Ch. Alexandria University

Supervised by

Professor / Sawsan Said Hafez

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Professor / Hesham Mohammed El-Sayed

Professor of Internal Medicine and nephrology Faculty of Medicine, Ain Shams University

Doctor / Hoda Ahmed Abd El-Sattar

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2014

First and foremost, I feel always indebted to **ALLAH**, the Most Merciful, Who gives me power to accomplishthis work.

I would like to express my deepest appreciation and sincere gratitude to **Professor/Sawsan Said Hafez**, Professor of Clinical and Chemical Pathology, Faculty of Medicine-Ain Shams University for her sincere help, constant encouragement, constructive criticism, and valuable guidance; I was truly honored to work under her supervision.

I would like to express my sincere thankfulness to **Professor/ Hesham Mohammed El-Sayed**Professor of Internal Medicine and nephrology Faculty of Medicine, Ain Shams University for his helpful directions and valuble advices and supervision.

I feel deeply indebted to **Doctor/Hoda Ahmed Abd El-Sattar**, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine-Ain Shams University, for her directions, precious opinions and contributive comments that served much in the construction of this work.

Last but not least, I dedicate this work to my father, my mother, my beloved husband my sisters, my brothers and my angels Arwa and Eyadfor their encouragement, love, support, and for always being there when i need them.

List of Contents

Subject	Page No.
Introduction	1
Aim of the Work	5
Review Of Literature	
☐ Acute Coronary Syndrome	6
☐ Chronic Kidney Disease	79
☐ Troponins	96
Subjects And Methods	120
Results	140
Discussion	149
Summary And Conclusion	155
Recommendations	159
References	160
Arabic Summary	

List of Tables

Table	No	Title	Page N	0.
Table ((1):	Biomarkers of Acute Corona	ry Syndrome	30
Table	(2):	Diagnostic Performance Myocardial Infarction at He from Onset of Chest Pain	ospital Admission Ba	sed on Time
Table	(3):	Classification of Chronic	Kidney Disease A	According to
		Glomerular Filtration Rate		80
Table	(4):	Descriptive Statistics of De	emographic Data am	ong the Two
		Studied Groups		142
Table	(5):	Statistical Comparison betw	veen the Two Studie	ed Groups as
		Regards Age and Sex usin	g Student Test and	Pearson Chi-
		square Test Respectively		142
Table	(6):	Statistical Comparison betw	veen the Two Studie	ed Groups as
		Regards Family History and	d Diabetes Mellitus v	ising Pearson
		Chi-square Test		143
Table	(7):	Descriptive Statistics of the	Measured Parameter	s in the Two
		Studied Groups		144
Table ((8): 5	Statistical Comparison between	en Measured Paramete	ers in the
		Two Studied Groups using V	Wilcoxon Rank Sum	Γest145
Table	(9):	Statistical Comparison amo	ng Measured Cardia	c Markers in
		Group 1 between Admis	ssion and after 6	Hours using
		Wilcoxon Signed Rank Test		_

List of Tables

Table No.	Title	P	age No.
Table (10)	Statistical Comparison a	among Measured	Cardiac Markers in
	Group 2 between Ad	lmission and aft	er 6 Hours using
	Wilcoxon Signed Rank	Test	147
Table (11):	Statistical Comparison	between the Two	Studied Groups as
	Regards the Relative F	Kinetic Changes	of Highly Sensitive
	Troponin using Student	Test	147
Table (12):	Diagnostic performance	e of the Highly	Sensitive Troponin
	Relative Kinetic Change	e for Discrimination	ng between Group 1
	and Group 2		148

List of Figures

Fig. No.	Title	Page No.
Figure (1): Classifi	cation of acute coronary syndron	me7
Figure (2): Pathoge	enesis of acute coronary syndrom	ne10
Figure (3): The stru	acture of troponin complex	97
Figure (4): Structur	re of the striated muscle contractile	e apparatus101
Figure (5): The prin	nciple of sandwich ELISA	116
Figure (6): ROC o	curve analysis showing diagnos	stic performance of the
kinetic change of t	he highly sensitive troponin in	group 2 versus group
1		148

List Of Abbreviations

Abbrev.	Full term
Ab	: Antibody
ACS	: Acute coronary syndrome
Ag	: Antigen
AMI	: Acute myocardial infarction
BNP	: B-type Natriuretic Peptide
CK	: Creatine kinase
CK-MB	: Creatine kinase-MB fraction
CRP	: C-reactive protein
CT	: Computed tomography
cTnC	: Cardiac Troponin-C
cTnI	: Cardiac troponinI
cTnT	: Cardiac troponin T
ECG	: Electrocardiogram
ECL	: Electrochemiluminescence
ED	: Emergency department
eGFR	: Estimated glomerular filteration rate

: Enzyme-Linked Immunosorbent Assay

ELISA

List Of Abbreviations (Cont....)

Abbrev. Full term

ESC/ACC: European Society of Cardiology and the American College

of Cardiology

FFAs : free fatty acids

FFAu : Free fatty acids unbound to albumin

GDF-15 : Growth differentiation factor-15

HDL-C: High density Lipoprotein- Cholesterol

HF : HEART failure

H-FABP: Heart-Fatty Acid Binding Protein

hs-TnT : High Sensitive Troponin T

HTN : Hypertention

IL-6 : Interleukin 6

IMA : Ischaemia modified albumin

MDRD : Modification of Diet in Renal Disease

MEIA : Microparticle Enzyme Immunoassay

MMP : Matrix metalloproteinases

MPO : Myeloperoxidase

MRI : Magnetic resonance imaging

List Of Abbreviations (Cont....)

Abbrev. Full term

MS : Metabolic syndrome

NPV : Negative predictive value

NSTEMI: Non-ST segment elevation myocardial infarction

NT-proBNP: N-terminal pro B-type natriuretic peptide

PAPP-A: Pregnancy-Associated Plasma Protein-A

PE : Pulmonary embolism

PLGF : Placental Growth Factor

PPV : Positive predictive value

ROC : Receiver operating characteristic curve

SAA : Serum amyloid A

sCD40L : Soluble CD40 ligand

STEMI : ST-segment elevation myocardial infarction

UA : Unstable angina

UFFAs : Unbound Free Fatty Acids

WBCHO: Whole-blood choline

WHO : World Health Organization

INTRODUCTION

INTRODUCTION

Acute coronary syndrome (ACS) is the obstruction of the coronary artery lumen with plaque disruption and acute myocardial ischemia as a consequence (Nakata et al., 2003). This term covers a wide spectrum of clinical signs and symptoms, including unstable angina and both ST segment elevation (STEMI) and non-ST segment (NSTEMI) elevation myocardial infarction (Nagesh and Roy, 2010). According to the World Health Organization (WHO) report dated January 2011; an estimated 7.2 million deaths per year worldwide are due to acute myocardial infarction (AMI) or other ischemic disorders of the heart (Lotze et al., 2011).

The diagnosis for AMI was redefined by international guidelines of clinicians and laboratory scientists in: the detection of a rise and/or fall of preferably cardiac troponin (cTn) either T or I, with at least one value exceeding the upper reference limit (99th percentile) measured in a cardio-healthy group together with clinical (history, physical exam) and imaging (electrocardiogram, echo) findings. Blood should be obtained at hospital presentation and 6-9 hours later. If previous measurements were not elevated

☐ Introduction

but the suspicion for AMI is high, serial sampling should be continued. Moreover, the upper reference limit should be provided with optimal precision defined by a coefficient of variation (CV) <10% (Thygesen et al., 2007).

However, at the time this universal definition was published, most cTn immunoassays that were commercially available were unable to detect cTn concentrations in the blood circulation of healthy individuals. In addition, these assays lacked analytical performance to measure the 99th percentile concentration with sufficient precision (CV<10%) (Cobbaert et al., 2008).

Lately, improved sensitivity and accuracy in the lower detectable limit have been achieved, resulting in a new generation cTn immunoassays. These so called high sensitivity cTn (hs-cTn) characterized cTn immunoassays by measurable are circulation of healthy individuals concentrations in the (Hollander, 2009). The hs-cTn assays are characterized by 10% CV at a lower 99th percentile upper reference concentration than conventional assays (Jaffe and Apple, 2010). These sensitive cTn assays increase the number of NSTEMI diagnosis and enables earlier detection of evolving NSTEMI (Giannitsis et al., 2010).

Introduction

The prevalence of coronary artery disease in patients with chronic kidney disease (CKD) is alarmingly high, and up to 38–62.5% of patients have significant stenosis (Freda et al., 2002). Despite the advances in the diagnosis and treatment of coronary artery disease, the 5-year survival for dialysis patients is 33–34%. Death from AMI contributes to about half of those cases. The majority of the patients have multivessel disease. Often the first manifestation of atherosclerosis in a patient with CKD is sudden cardiac death or AMI, making it crucial to diagnose cardiac ischemia effectively (Kanderian and Francis, 2006).

Diagnosing an AMI in CKD patients is often difficult though essential. Traditional diagnostic tools such as symptoms and electrocardiographic manifestations are not entirely helpful in patients with CKD, and physicians are often left to rely on laboratory analysis of biomarkers such as cardiac troponin. However, the diagnostic ability and prognostic value of cardiac troponin T and I in patients with CKD are uncertain in the emergency setting, making their interpretation problematic (Kanderian and Francis, 2006).

☐ Introduction

Understanding the clinical significance of elevated cardiac troponin T and I in this patient population is extremely important as individuals with CKD have a higher likelihood for having AMI (Han et al., 2005). Assessments of the standard and the high sensitivity troponin T assays in CKD patients, showed that 76% of dialysis patients had detectable troponin with the old assay but 100% of patients had detectable troponin T with the high sensitivity assay in the absence of clinical acute myocardial necrosis (McGill et al., 2010).

Therefore, knowledge about the magnitude of concentration changes (δ) in AMI is essential to the definition of an optimal dynamic metric that allows discrimination of acute from chronic conditions and of AMI with CKD from CKD only that also causes cardiac troponin increases (Javed et al., 2009).

AIM OF THE WORK