

EFFECT OF SELF ASSEMBLED QUANTUM DOTS ON CARRIER MOBILITY, WITH APPLICATION TO MODELING THE DARK CURRENT IN QUANTUM DOT INFRARED PHOTODETECTORS

By

Sarah Youssef Abdelrahman Ahmed Abdelrahman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

EFFECT OF SELF ASSEMBLED QUANTUM DOTS ON CARRIER MOBILITY, WITH APPLICATION TO MODELING THE DARK CURRENT IN QUANTUM DOT INFRARED PHOTODETECTORS

By

Sarah Youssef Abdelrahman Ahmed Abdelrahman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

Under the Supervision of

Dr. Yasser M. El-Batawy
Assistant Professor of Engineering Physics
Department of Engineering Mathematics
and Physics
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer:** Sarah Youssef Abdelrahman Ahmed Abdelrahman

Date of Birth: 21/3 / 1990 **Nationality:** Egyptian

E-mail: eng sarah youssef@hotmail.com

Phone.: 01118447685

Address:

Registration Date: 1 / 3 / 2013
Awarding Date: / / 2016
Degree: Master of Science

Department : Engineering Mathematics and Physics

Supervisors: Prof. Dr. Ahmed A. Abouelsaood

Dr. Yasser M. El-Batawy

Examiners: Prof. Dr. Ahmed A. Abouelsaood

Prof. Dr. Ahmed A. Alsadek

Prof. Dr. Adel H. Philips (Emeritus Professor, Engineering

Physics and Mathematics, Faculty of Engineering, Ain Shams University)

Title of Thesis:

Effect of Self Assembled Quantum Dots on Carrier Mobility, with Application to Modeling the Dark Current in Quantum Dot Infrared Photodetectors

Key Words: Quantum dot infrared photodetectors, quantum dots, mobility, dark current, Boltzmann transport equation

Summary:

A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers, resulting in limiting their mobility. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.

Acknowledgments

First and foremost, I must thank Allah for His great mercy, help, guidance and blessings. Then, I would like to express my sincere gratitude and appreciation to my academic advisors, Prof. Ahmed A. Abouelsaood and Dr. Yasser M. El-Batawy, for their guidance, encouragement, patience, support, insight and their great knowledge that made this work possible. Their contributions to this work were so integral that they cannot be described in words here. Additionally, I would like to take this opportunity to say warm thanks to all my colleagues and friends, who have been so supportive along the way of doing my thesis. Finally, I must thank my family for the continual understanding, support and love.

Dedication

This thesis is dedicated to my parents, sisters, husband, and my beloved daughter.

Table of Contents

TABLE OF CONTENTS	I
LIST OF TABLES	V
LIST OF FIGURES	VI
LIST OF SYMBOLS AND ABBREVIATIONS	VII
ABSTRACT	
CHAPTER 1: INTRODUCTION AND OVERVIEW	
1.1. Infrared systems	2
1.1.1. Infrared systems applications	3
1.2. Photodetectors	
1.2.1. Infrared photodetectors	
1.2.1.1. Intrinsic Interband Photodetectors	
1.2.1.2. Extrinsic photodetectors	
1.2.1.3. Intersubband photodetectors	(
1.3. QUANTUM DOTS (QDs)	7
1.3.1. Fabrication of QD	8
1.3.1.1. Etching	
1.3.1.2. Semiconductor microcrystal	
1.3.1.3. Selective growth	
1.3.1.4. Self-organized growth (Stranski-Krastanov) ^[45]	
1.4. MODELING OF THE DARK CURRENT OF QDIPS	
1.4.1. Previous work of dark current modeling in QDIP	
1.4.2. The carrier mobility	11
1.4.2.1. Boltzmann's transport equation (BTE)	11
1.4.2.2. Methods of solving Boltzmann's transport equation	
1.4.2.2.1. Retaxtion time approximation	
1.4.2.2.3. Scattering matrix approach	
1.4.2.2.4. Cellular Automata	
1.5. THE THESIS PURPOSE	13
1.6. Conclusions	
CHAPTER 2 : THE COMPLETE MODEL OF THE DARK CURR	ENT AND
MOBILITY OF QDIPS	
2.1. The QDIP structure	14
2.2. THE DARK CURRENT MODEL FOR QDIPS	
2.3. ELECTRON MOBILITY CALCULATION FOR QDIP	
2.3.1. Relaxation time approximation	
2.3.2. Time-domain finite-difference method	
2.3.3. The matrix element of perturbation by conical QDs	
2.3.4. The effects of other Scattering mechanisms	
2.4. Conclusion	35
CHAPTER 3: RESULTS AND DISCUSSIONS	36
3.1. THE NUMERICAL CALCULATIONS OF THE CARRIER MOBILITY	36
3.1.1. The matrix element	
3.2. CARRIER MOBILITY FOR SPHERICAL QDS	
3.2.1. The distribution function	
3.2.2. Velocity and mobility	41

3.3.	CARRIER MOBILITY FOR CONICAL QD	43
3.3	.1. The distribution function	43
3.3	.2. Velocity and mobility	44
3	3.3.2.1. The effects of different scattering mechanisms on electron mobility	46
3.3	.3. Effects of QD density and dimensions on the mobility of Conical Q	D
Str	ucture	
3.4.	RESULTS OF DARK CURRENT	49
3.4	.1. The comparison with the experimental results of dark current	49
3.4	•	
3.4	.3. Effects of temperature on the dark current	50
3.5.		
CTT	ALDY AND GONGLEGONG	
SUMIM	ARY AND CONCLUSIONS	53
I.	THE THEORETICAL METHOD FOR CALCULATING THE ELECTRON MOBILITY IN	
ODIF	OS	53
II.	THE COMPLETED MODEL OF THE DARK CURRENT	
		55
	NDIX A: MOBILITY CALCULATIONS IN THE PRESENCE OF	
SCAT7	FERING MECHANISMS OTHER THAN QUANTUM DOTS	55
Ī.	THE SCATTERING TERM OF THE LONGITUDINAL OPTICAL PHONONS	55
II.		55
	EMPIRICAL EXPRESSIONS OF MOBILITY LIMITED BY DIFFERENT SCATTERING	
MECH	IANISMS ^{[79], [80]}	
•	Mobility limited by doping (impurities)	
•	Mobility limited by optical phonons (for GaAs)	58
•	Mobility limited by acoustic phonons (for GaAs)	
• DEFEL	Mobility limited by acoustic phonons (for GaAs) RENCES	58

List of Tables

TABLE 3-1: THE MOBILITY OF CONICAL AND SPHERICAL QDS UNDI	ER THE SAME CONDITIONS45
TABLE 3-2: SCATTERING RATES DUE TO EACH SCATTERING MECHA	ANISM46
TABLE A- 1: PARAMETERS OF THE MOBILITY EXPERIMENTAL MOD	OFI (FOR GAAS) ^{[78], [79]}

List of Figures

FIGURE 1-1: BLACKBODY RADIATION FOR DIFFERENT TEMPERATURES	3
FIGURE 1-2: A PHOTODETECTOR RECEIVING INCIDENT PHOTONS AND CONVERTING THEM INTO AN	
ELECTRICAL SIGNAL	4
FIGURE 1-3: HGCDTE ENERGY BAND DIAGRAM SHOWING ITS NARROW BAND GAP	
FIGURE 1-4: A BAND DIAGRAM SHOWING THE QUANTUM WELL STRUCTURE	
FIGURE 1-5: A BAND DIAGRAM SHOWING THE QUANTUM DOT STRUCTURE	
FIGURE 1-6: BAND STRUCTURE OF A SINGLE QUANTUM DOT STRUCTURE	
FIGURE 1-7: SELF ORGANIZED DOTS FORMED USING STRANSKI-KRASTANOV GROWTH METHOD	
FIGURE 2-1: THE SCHEMATIC OF THE QDIP STRUCTURE	
FIGURE 2-2: BASIC CELL OF CONICAL QD WITH RADIUS $\it rb$ and height $\it hb$, containing a QD with	
RADIUS <i>rd</i> AND A HEIGHT OF <i>hd</i> .	18
FIGURE 2-3: BAND STRUCTURE SHOWING THE CONDUCTION BAND OFFSET BETWEEN THE BARRIER	
AND QUANTUM DOT MATERIALS	21
FIGURE 2-4: THE SCATTERING PROCESS DUE TO SPHERICAL SCATTERER	
FIGURE 2-5: THE RELATION BETWEEN $k,k',$ AND q IN THE CASE OF ELASTIC COLLISION (LIKE QD	
SCATTERING) IN THE K-SPACE	29
FIGURE 2-6: A SPHERICAL QD WITH RADIUS ro	
FIGURE 2-7: A CONICAL QD WITH BASE RADIUS rd , HEIGHT hd , and half apex angle $ heta o$	
FIGURE 3-1: THE FLOW CHART DESCRIBING THE COMPLETE METHOD TO DETERMINE THE VELOCITY-	
ELECTRIC FIELD RELATION.	37
FIGURE 3-2: THE MATRIX-ELEMENT AMPLITUDE SQUARED Vk' , $k2$ OF SPHERICAL AND CONICAL QDS	OF
THE SAME VOLUME FOR DIFFERENT SCATTERING ANGLES AND DIFFERENT $\theta k, \varphi k'$	38
FIGURE 3-3: THE DISTRIBUTION FUNCTION $f(k)$ VERSUS THE MAGNITUDE OF K-VECTOR AT ELECTRIC	2
FIELD = $9X10^6$ V/M AND $\theta k = 18^\circ$	
FIGURE 3-4: THE DISTRIBUTION FUNCTION VERSUS θk AT ELECTRIC FIELD = $9*10^6$ V/M AND $k=$	
10^8 M^ - 1	40
FIGURE 3-5: THE DISTRIBUTION FUNCTION VERSUS THE MAGNITUDE OF K-VECTOR AT ELECTRIC FIELD	D =
10^4 V/M and $\theta k = 18^\circ$	40
FIGURE 3-6: THE DISTRIBUTION FUNCTION VERSUS THETA (θk) AT ELECTRIC FIELD $= 10^4 \text{V/M}$ and)
$k = 10^8 \mathrm{M}^{-1}$	41
FIGURE 3-7: THE VELOCITY AS A FUNCTION OF TIME AT DIFFERENT VALUES OF THE APPLIED ELECTRIC	2
FIELD	42
FIGURE 3-8: THE VELOCITY-ELECTRIC FIELD RELATION FOR DIFFERENT NUMBERS OF TIME STEPS	.42
Figure 3-9: The distribution function versus the electron energy for $\theta k=36$ and	
ELECTRIC FIELD $\xi=6$ X 10^5 V/M at different time steps	
FIGURE 3-10: THE DISTRIBUTION FUNCTION VERSUS WAVE VECTOR ANGLE $(heta k)$ FOR ELECTRON ENER	
$\varepsilon k = 1.4$ X 10^8 J and electric field $\xi = 6$ X 10^5 V/M at different time steps	44
FIGURE 3-11: THE VELOCITY OF THE CARRIER FOR DIFFERENT VALUES OF THE APPLIED ELECTRIC	
FIELD	
FIGURE 3-12: THE CALCULATED TEMPERATURE FOR QD SCATTERING ONLY	
FIGURE 3-13: CALCULATED CARRIER MOBILITY IN QDIP VERSUS THE QD BASE RADIUS FOR DIFFERENT	
QUANTUM DOT DENSITIES	48
FIGURE 3-14: CALCULATED CARRIER MOBILITY IN QDIP VERSUS THE QD HEIGHT FOR DIFFERENT	
QUANTUM DOT DENSITIES	
FIGURE 3-15: CALCULATED DARK CURRENT AND EXPERIMENTAL DATA IN ^[10] OF QDIP	49
FIGURE 3-16: THE DARK CURRENT IN QDIP VERSUS BIAS VOLTAGE FOR DIFFERENT VALUES OF	
QUANTUM DOT DENSITY AT T=77 K	50
FIGURE 3-17: THE DARK CURRENT IN QDIP VERSUS BIAS VOLTAGE FOR DIFFERENT OPERATING	_
TEMPERATURES (QD DENSITY= 2.5 X10 $^{\circ}2$ 2M $^{\circ}-3$, $rd=10$ NM, AND $hd=7$ NM)	
FIGURE A-1: DIFFERENT CASES OF SCATTERING	56

List of Symbols and Abbreviations

QDIP Quantum dot infrared photodetector

QWIP Quantum well infrared photodetector

BTE Boltzmann's transport equation

QD Quantum dot

QW Quantum well

LED Light emitting diode

HgCdTe Mercury Cadmium Telluride

PbSe Lead selenide

PbTe Lead telluride

PbS Lead sulfide

GaAs Gallium arsenide

InAs Indium arsenide

InGaAs Indium gallium arsenide

CdSe Cadmium selenide

CdS Cadmium sulfide

CuBr Copper bromide

CuCl Copper chloride

 $arepsilon_g$ Bandgap energy

J Electric current density

e Electron charge

 μ Electron mobility

n Electron concentration

 ξ Electric field

 D_n Electron diffusion coefficient

 N_c Effective density of states in conduction band

 $F_{1/2}$ Fermi Dirac integral of order half

 $arepsilon_f$ Fermi energy level

 ε_c Conduction band edge

 K_B Boltzmann's constant

T Temperature

V Electrostatic potential

 Γ Gamma function

 ρ Volumetric charge density

 ϵ Barrier material permittivity

 N_D^+ Ionized donor concentration

 N_D Donors concentration

 n_{QD} Quantum dot density

 $\langle N \rangle$ Average dot filling

f Electron distribution function

 \vec{k} Wave vector

 \vec{r} Real space vector

ħ Reduced Planck's constant

 $W_{k',k}$ Transition rate from one state to another

 $V_{k',k}$ Matrix element of perturbation

 V_b Conduction band offset

 τ_m Momentum relaxation time

 au_i Single- particle life time

 α Scattering angle

 Δt Time discretization step

 $\langle v \rangle$ Drift velocity

 r_b Basic cell radius

h_b Basic cell height

 r_d Quantum dot base radius

h_d Quantum dot height

 θ_o Half apex angle of quantum dot

 m^* Effective mass in the barrier material

Abstract

The quantum dot infrared photodetector (QDIP) is one of the most promising candidates for infrared photodetection. According to theoretical studies, its performance is expected to be superior to that of an infrared photodetector making use of more mature technologies such as an HgCdTe or a quantum well infrared photodetector (QWIP).

Although there is a lot of experimental and theoretical research work on QDIPs, there is no complete theoretical model for the device, even one for its dark current which is perceived as noise and limits its sensitivity and maximum operating temperature. In a previous work, an almost microscopic generalized drift-diffusion model of the dark current characteristics has been developed, and shown to successfully predict the dark current dependence on the biasing voltage up to an overall scale factor that could not be determined due to the lack of reliable values of the carrier mobility in the presence of the quantum dots.

The purpose of this thesis is to develop a theoretical method for calculating the electron mobility in QDIPs and use it to complete the above-mentioned dark current model. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation (BTE) in a bulk semiconductor material with randomly-positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. After studying the dependence of the mobility on various relevant parameters, the completed model is verified by comparing the dark current characteristics it predicts to those experimentally measured and reported for actual InAs/GaAs devices. Finally, the effect of the various relevant device parameters, including the operating temperature and the quantum dot average density, is studied. The next step should be the extension of the model to the calculation of the photocurrent.

Keywords: Quantum dot infrared photodetectors, quantum dots, mobility, dark current, Boltzmann transport equation

Chapter 1: Introduction and overview

The nanostructures have been developed decades ago and they have been expected to significantly improve the existing devices as they have a lot of promising properties, especially the quantum dots^{[1]-[6]} which are expected to be superior to competing nanostructures. In Quantum dot-structures, the size of quantum dot is comparable to molecular size and the band gap can be accurately tuned by changing the shape and size of QDs and the composition of the material. The tunability of the band gap is a very important optoelectronic property as it allows the tuning of the absorption and emission spectrum. Thus, the quantum dots have a lot of applications in optoelectronics, and one of the most important of them is quantum dot infrared photodetector.

The quantum dot infrared photodetector (QDIP) is one of the most promising candidate for infrared photodetection, as it is expected to have a superior performance to more mature infrared photodetectors such as mercury cadmium telluride photodetectors (HgCdTe) and quantum well infrared photodetectors (QWIP) [7]. The QDIP is expected to have lower dark current which is considered as noise that limits the sensitivity of the photodetector, in addition, it can operate at higher temperatures [7], and can detect the normal incident radiation while other types like QWIP cannot [8].

Modeling of QDIP is very important to optimize its performance. One of the most important and significant parameters to be modeled is the dark current. The dark current of photodetectors is perceived as noise since it is the current that is generated and flows in the photodetector in the absence of incident optical signal. In addition, dark current is considered as the main factor limiting the maximum operating temperature of the photodetector.

There are many experimental [9]-[15] and theoretical [16]-[31] studies of QDIPs which mainly aim to develop models of important parameters such as the dark current to predictively analysis the performance of QDIPs. Most of those models proposed for the device consider the device dark current to be space-charge limited, and are generally semi-phenomenological in the sense that some of their parameters are not related to the structure and the material properties of the device but are fitted to experimental results^{[16]-[27]}. The few suggested fully microscopic models deal with either a highly reduced geometry [28] or more complicated structures designed to reduce the dark current [29]-[31].

In [32], a model for calculating the dot filing and the dark current profile of QDIPs has been presented. This model is almost microscopic as it gives the correct dependence of the dark current on the applied biasing apart from the overall current scale which could not be fixed in the lack of reliable values of the carrier mobility in the presence of the conical QDs; and this was the main motivation to develop a complete theoretical method for the calculation of the mobility for QDIPs. In addition, calculating the mobility is so necessary to determine other important parameters such as the electrical conductivity, diffusion constant, drift velocity, and the current flows through a device. Moreover, the mobility itself is an important parameter for any optoelectronic device as it is the measure of how fast carriers flow in the device due to an electric field. It is the key parameter in transport simulation and need to be determined in any electrical device.

There is no study to determine mobility or other related parameters such as velocity in QDIPs and it is usually determined empirically; however, there are some theoretical studies [33],[34] done to determine the mobility or mobility-related parameters such as velocity or relaxation time in other devices and structures. Unfortunately, most of these

studies use approximated methods that might not be valid for many realistic devices or scattering mechanisms.

As there's no complete theoretical model of dark current and no reliable values of electron mobility in QDIPs, we were motivated to present in this thesis a fully theoretical procedure for calculation the electron mobility in quantum dot infrared photodetectors, and use it to complete the dark current model presented in the previous work [32] to get the values of dark current, not only its profile. The completed dark current model and the mobility calculations are generic and can be applied for other QDIPs with different semiconductor compounds, number of quantum dot layers, quantum dot density in layers, or dimensions and with some modifications it can be used with other shapes of quantum dots such as semi-spheroid or pyramidal quantum dots or even with other optoelectronic devices based on quantum dots. In addition, the mobility calculations can be extended to calculate important parameters such as the photocurrent of the device which is the current flowing through the photodetector due to exposure to illumination.

After this brief introduction of our study, we will have an overview over quantum dot infrared photodetectors. First, we will discuss the infrared systems and their applications, infrared photodetectors, quantum dots, their applications and their fabrication techniques. Then, we represent a survey over modeling of QDIP, especially modeling of its dark current. After that, we will discuss the mobility and the Boltzmann's transport equation as it is the core of the method of electron mobility calculation for quantum dot devices that will be developed in chapter 2.

1.1. Infrared systems

The electromagnetic spectrum is divided into regions according to their wavelengths; the ultraviolet, the visible light, and the infrared. Infrared radiation is the region of electromagnetic spectrum with wavelengths ranging from 700nm to 1mm. As discovered experimentally, the different objects emit different radiations depending on the temperature of these objects. The concept of blackbody (like sun or human body) radiation gives an explanation of this phenomena as shown in Figure 1-1 where the intensity of the blackbody radiation is plotted for different temperatures. It shows that most of blackbodies have their radiation peaks in the infrared region (700 nm to 1 mm) except at very high temperatures.