The Association Between E-selectin Gene Polymorphism and Atherosclerosis in End-Stage Renal Disease

Thesis

Submitted for fulfillment of MSc. Degree in Chemical and Clinical Pathology

Presented by Alaa Afif AbdelRaouf

M.B.B.Ch, Faculty of Medicine, Cairo University

Under Supervision of

Professor Dr. Nadida Abdelhamid Gohar

Professor of Chemical and Clinical Pathology
Faculty of Medicine, Cairo University

Dr. Nahla Aly Fawzy Fayek

Assistant Professor of Chemical and Clinical Pathology
Faculty of Medicine, Cairo University

Dr. Bahaa Eldeen Mostafa Zayed

Lecturer of Internal Medicine
Faculty of Medicine, Cairo University
Faculty of Medicine

Cairo University
2009

ACKNOWLEDGMENT

"FIRST OF ALL THANK GOD"

I thank God for all his blessings and givings, particularly the blessing of being surrounded by loving, supportive family and friends who help me a lot.

I would like to express my admiration and deepest gratitude to my dear professor Dr. Nadida Abdelhamid Gohar, Professor of Chemical and Clinical Pathology, Cairo University, for her continuous support, encouragement and kindness, her sincere attitude and gentleness will always be inspiriting to me.

I would like to express my sincere gratitude and admiration to \mathbf{Dr} . Nahla Aly Fawzy, Assistant Professor of Chemical and Clinical Pathology, Cairo University for her guidance, encouragement and patience, her help can never be forgotten and working under her supervision had been a great honor and indeed a great privilege.

I am grateful for the skill and help of **Dr. Bahaa Eldeen Mostafa Zayed,** Lecturer of Internal Medicine, Cairo University, who helped me sincerely to complete this work.

I would also like to express my sincere gratitude to **Dr. Marian**Samir, Assistant Professor of Chemical and Clinical Pathology, Cairo

University for her guidance, meticulous supervision, and support.

I would also like to express my admiration and gratitude to **Dr.**Lamia Adel Salah Eldeen, Lecturer of Radiology, Cairo University, who was very helpful, supportive, she was also very patient and kind.

Also I am grateful to **Dr. Heba Sedrak**, Lecturer of Internal Medicine, Cairo University, for her help.

To my mother, father, and my husband Shereef, no single word can express my feelings, and my gratefulness for their support and encouragement.

To my little sweet baby Rokaya

ABSTRACT

Atherosclerosis is the main cause of death and cardiovascular (CV)

complications in end-stage renal disease (ESRD). A possible explanation

is that decreased renal function may be associated with other non-

traditional risk factors, and genetic factors. This study involved 40 end

stage renal disease patients and 30 age- and sex- matched healthy control

subjects. All were subjected to Full history taking, full clinical

examination, kidney functions & genotyping of the "Leu 554 Phe"

polymorphism in the E-selectin gene, Doppler examination of the carotid

artery (for the patient group only).

The CT (heterozygous) genotype is the more prevalent genotype in

our small studied groups and the presence of the T allele might not carry

the risk of atherosclerosis in ESRD patients.

Key words: Chronic kidney disease,

Atherosclerosis,

E-selectin.

CONTENTS

ANTER OR MICHAEL	Page
INTRODUCTION.	1
REVIEW OF LITERATURE	
Chapter I: Chronic Kidney Disease	3
Introduction	3
Causes of chronic kidney disease	4
Risk factors for chronic kidney disease	6
Diagnosis of chronic kidney disease	7
(I)History	7
(II)Physical examination	7
(III)Imaging	8
(IV)Renal biopsy	9
(V)Laboratory Measures	9
CKD detection programs	20
Stages of Chronic Kidney Disease	20
Chapter II: Atherosclerosis	22
Introduction	22
Pathophysiology of atherosclerosis	22
Histopathology of atherosclerotic lesions	23
Mechanisms of the risk factors for atherosclerosis	24
Diagnosis of atherosclerosis.	25
History	25
Physical signs	26
Laboratory Studies of atherosclerosis	27
Imaging Studies	29
The Link between CKD & CVD	31
Introduction	31

Bidirectional Association	31
Cardiovascular Risk Factors in chronic kidney dis	ease33
Endothelial dysfunction	36
Vascular changes & their progress in the course o	f CKD39
Chapter III: Selectins	41
Introduction	41
Selectin Discovery	42
Selectin structure	43
Selectin ligands/ counter receptors	45
The physiological role of selectins	47
Transmembrane signaling through selectins	51
Cellular Mechanisms for Selectin Regulation	55
Selectins and diseases	59
E-Selectin	62
Gene map locus	62
Gene structure	62
Gene function	62
Molecular genetics	62
SUBJECTS AND METHODS	65
RESULTS	85
DISCUSSION	98
SUMMARY & CONCLUSION	104
RECOMMENDATIONS	106
REFERENCES	107
ARABIC SUMMARY	

LIST OF TABLES

	Page
Table (1): Causes of chronic kidney disease	5
Table (2): Risk factors for chronic kidney disease.	6
Table (3): staging system for CKD.	21
Table (4): List of traditional risk factors.	33
Table (5): List of non-traditional risk factors	35
Table (6): Clinical presentation among studied groups	85
Table (7): Clinical data of studied groups.	86
Table (8): Laboratory findings of studied groups.	86
Table (9): The genotype distribution among studied groups	88
Table (10): Leu554Phe distribution among study groups	89
Table (11): Sex, smoking, & hypertension of study groups	90
Table (12): The genotype risk among study group	90
Table (13): Allele distribution among study group	91
Table (15): The atherosclerotic plaques among patients	92
Table (14): Carotid Doppler findings	91
Table (16): Age, sex, &clinical data of patients	93
Table (17): laboratory findings in patients group	94
Table (18): L/P554 & Carotid Doppler findings in patients	95
Table (19): Age, sex, & clinical data of control subjects	96
Table (20): laboratory findings & leu554Phe.	97

LIST OF FIGURES

Page	
Figure 1: Oxidation and antioxidant pathways in CKD	.38
Figure 2: Domain composition of the three known human selectins	.44
Figure 3 : Location of selectins and their carbohydrate ligands	45
Figure 4: Steps of leukocyte interactions & endothelim mediated	by
selectins	48
Figure 5: Regulation of leukocyte adhesion and functional respon	ıses
through selectins	.52
Figure 6: Schematic representation of signaling pathways	in
leukocytes	54
Figure 7: E-selectin Leu554Phe polymorphism distribution among st groups	-
Figure 8: The genotype risk among study group	.89
Figure 9: The genotype risk among study groups	90

LIST OF ABREVIATIONS

AA: Arachidonic acid

ABPM: Ambulatory blood pressure monitoring

ACE: Angiotensin converting enzyme

ADMA: Asymmetric dimethylarginine

ANCA: Anti-neutrophil cytoplasmic antibody

ANOVA: Analysis of variance

AOPP: Advanced oxidation protein products

B.P.: Blood pressure

BTP: Beta-Trace Protein

BUN: Blood urea nitrogen

CAD: Coronary artery disease

Ca × P: Calcium-phosphorus product

[Ca²⁺]: Intracellular calcium

cAMP: Cyclic adenosine monophosphate

CBC: Complete blood count

CHF: Congestive heart failure

CHO: Carbohydrates

cIMT: Carotid artery intima-media thickness

CKD: Chronic kidney disease

cPLA2: Cytosolic phopholipase A2

Creat. : Creatinine

CRF: Chronic renal failure

CRP: C-reactive protein

CT: Computed tomography

CVD: Cardiovascular disease

CysC: Cystatin C

CytP450: Cytochromes P450

DAG: 1,2-diacylglycerol

DBP: Diastolic blood pressure

DM: Diabetes mellitus

DNA: Deoxyribonucleic acid

DTPA: 99mTc-labeled diethylenetriamine pentaacetic acid

EDTA: Ethylenediamine Tetra-Acetic Acid

EGF: Epidermal growth factor

eGFR: Estimated GFR

ELAM1: Endothelial leukocyte adhesion molecule 1

ERK: Extracellular signal-regulated kinase

ESL-1: E-selectin ligand-1

ESRD: End-stage renal disease

FBS: Fasting blood sugar

FMD: Flow-mediated dilatation

GAPs: GTPase activating proteins

GFR: Glomerular filtration rate

GlyCAM-1: Glycosylation-dependent cell adhesion molecule-1

GRFs: Guanine nucleotide regulatory factors

GSH: Reduced glutathione

GSH-PX: Glutathione peroxidase

GSSG: Oxidized glutathione

GTP: Guanosine triphosphate

Hb: Hemoglobin concentration.

HbA1c: Glycated hemoglobin

HD: Hemodialysis

HDL: High-density lipoprotein

HIV: Human immunodeficiency virus

HOCl: Hydrochlorus acid

HOMA: Homeostasis model assessment method

HTN: Hypertension

ICAM: Intercellular adhesion molecules

IgA: Immunoglobulin A

IL: Interleukin

IL-1: Interleukin -1

IL-6: Interleukin -6

IL-8: Interleukin-8

IMT: Intima-media thickness

IP3: Inositol 1,4,5-trisphosphate

IV contrast-enhanced CT: Intravenous contrast-enhanced Computed tomography

Kg.: Kilogram

L: Ligand

LDL: Low-density lipoprotein

Leu: Leucine aminoacid

Leu554Phe: Leucine to phenylalanine at codon 554

Lp(a): Lipoprotein(a)

L-PGDS: Lipocalin-type urinary prostaglandin D synthase

LPS: Lipopolysaccharide

LT: Leukotrienes

LTCSA: Left side cross-sectional area

LTIMT: Left side intema-media thickness

LX: Lipoxins

MAdCAM-1: Mucosal addressin cell adhesion molecule-1

MAP: Mitogen-activated protein

MAP kinase: Mitogen-activated protein kinases

MDRD formula: Modification of Diet in Renal Disease formula

MPO: Myeloperoxidase

MRI: Magnetic resonant imaging

NaCl: Sodium Chloride

NADPH: Nicotinamideadenine dinucleotide phosphate

NaOH: sodium hydroxide

NF-AT: Nuclear factor of activated T cells

NO: Nitricoxide

NOS: Nitric oxide synthase

NT-pro-BNP: N-terminal pro-brain natriuretic peptide

OPG: Osteoprotegerin

OPN: Osteopontin

oxLDL: Oxidized LDL

PA: Phosphatidic acid

PC: Phosphatidyl choline

PCR: Polymerase chain reaction.

Phe: Phenylalanine aminoacid

PIP2: Phosphatidyl inositol 4,5-bisphosphate

PKC: Protein kinase C

PLC: Phospholipase C

PLD: Phospholipase D

PSGL-1: P-selectin glycolipid-1

PTH: Parathyroid hormone

PTKs: Protein tyrosine kinases

PTX3: Pentraxin-3

R : Receptor

RFLP: Restriction fragment length polymorphism.

RRT: Renal replacement therapy

RT: Right side

RTCSA: Right side cross-sectional area

RTIMT: Right side intema-media thickness

SBP: Systolic blood pressure

SCRs: Short consensus repeats

SDS: Sodium Dodecyl Sulphate

SELE gene : Selectin-E gene

SELL gene : Selectin-L gene

SELP gene : Selectin-P gene

Sgp200: Sulfated glycoprotein

sLe^a: Sialyl Lewis^a

sLe^x: Sialyl Lewis^x

SNP: Single nucleotide polymorphism

SOD: SuperOxide Dismutase

S128A: Serine to arginine at codon 128

T3: Tri-iodothyronine.

TCL: Total cholesterol

TG: Triglycerides

TGF-β: Transforming growth factor-beta

tHcys: Homocystine

TNF- α : Tumor necrosis factor- α

U-alb: Urinary albumin excretion

UV: Ultra violet.

VCAM: Vascular cell adhesion molecule

VLDL: Very low density lipoprotein

WBC: White blood cell count

(y) : years

INTRODUCTION & AIM OF WORK

Atherosclerosis is the main cause of death and cardiovascular (CV) complications in end-stage renal disease (ESRD) (Testa et al., 2006). The dialysis population is an interesting natural model of atherosclerosis because uremia is a strong amplifier of arterial damage (Zoccali, 2002). This could partially be explained by the traditional risk factors, i.e. hypertension, smoking, diabetes and dyslipidemia (Foley et al., 1998). Besides, attention has been focused on disease- specific factors like hyperparathyroidism, hypoalbuminemia and anemia and on emerging factors hyperhomocysteinemia and inflammation. Moreover, genetic factors are of relevance in atherosclerosis. Association studies between genetic factors and indicators of arterial damage are therefore important in order to understand the unique severity of CV disease in ESRD (Balakrishnan et al., 2005).

Soluble adhesion molecules may play an important role in the genesis of CVD by affecting thrombosis, leukocyte infiltration, smooth-muscle proliferation, and cell migration. Moreover, adhesion molecules are elevated among patients with atherosclerosis, and in patients with coronary heart disease. (Stenvinkel et al., 2000)

E-selectin is a key adhesion molecule which plays a fundamental role in endothelial progenitor cell-dependent reparative mechanisms in experimental ischaemia and it serves to anchor leucocytes to the endothelium in inflammatory processes (*Malatino et al., 2007*). In ESRD, the Leu554Phe polymorphism of E-selectin gene is associated with the