

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

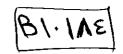
التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من


To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ENTERAL VERSUS COMBINED ENTERAL AND PARTIAL PARENTERAL NUTRITION IN CRITICALLY ILL PEDIATRIC PATIENTS ON MECHANICAL VENTILATION.

THESIS

Submitted in partial fulfillment for the requirements of M.D. degree in **Pediatrics**

By

Ahmed Abdel Basset Abo El-Ezz

M.B.B.Ch., M.Sc., Tanta

Supervisors

Prof.

Mohamed Amr Hamam

Professor of Pediatrics

Faculty of Medicine Tanta University

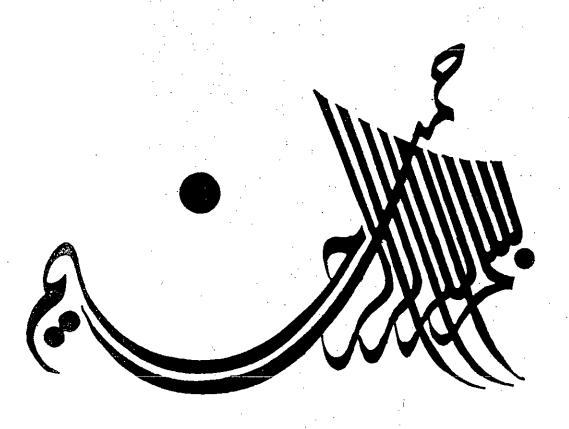
Prof.

Nagy M. Abo-El Hana

Professor of Pediatrics

Faculty of Medicine Tanta University Prof.

Bayoumi M. A. Nassar


Professor of Anesthesiology and Critical care Faculty of Medicine Tanta University

Prof.

Mokhtar M. Mabrouk

Professor of Analytical Chemistry Faculty of Pharmacy Tanta University

FACULTY OF MEDICINE Tanta University 2002

المُولِّ مِنْ الْمُولِ الْمُؤ المُولِ الْمُولِ الْمُؤْلِ الْمُؤْلِ الْمُؤْلِ الْمُؤْلِ الْمُؤْلِ الْمُؤْلِ الْمُؤْلِ الْمُؤْلِ الْمُؤْلِ ال المَدَى المَدَالِينَ اللَّهُ اللَّهِ اللَّهُ اللَّ

(1) (4)

3

ACKNOWLEDGEMENT

Thanks to ALLAH, to whom we should offer the greatest gratitude.

It is of my pleasure to express my deepest gratitude and sincere thanks to Dr. MOHAMED AMR HAMAM, Prof. of Pediatrics, Faculty of Medicine, Tanta University for his continuous guidance, inspiring supervision and generous help.

I am deeply grateful to Dr. NAGY MOHAMED ABO-EL HANA, Prof. of Pediatrics, Faculty of Medicine, Tanta University for his kind supervision, and proper advice.

I am actually deeply indebted to Dr. BAYOUMI MOHAMED ABD EL-HADY NASSAR, Prof. of Anesthesiology and Critical Care, Faculty of Medicine, Tanta University for his unlimited great help, that enabled me to achieve this work.

My sincere thanks and deepest gratitude to Dr. MOKHTAR MOHAMED MABROUK, Prof. Of Analytical Chemistry, Faculty of Pharmacy, Tanta University for his continuous cooperation and helpful assistance.

I would like to express my heartful thanks to all those who have joined and shared in the completion of this work i.e., physicians, technicians, nurses and our children.

CONTENTS

	Page
INTRODUCTION	1
* Nutritional requirements in normal and critical	
conditions	2
* Assessment of nutritional status in infants and	
children	16
* nutrition in critical illness	22
* Nutritional support	31
• Enteral nutrition	31
• Parenteral nutrition	48
* Nutritional support of some system dysfunction.	62
AIM OF THE WORK	83
PATIENTS AND METHODS	84
RESULTS	102
DISCUSSION	162
SUMMARY AND CONCLUSION	174
REFERENCES	177
ARARIC SUMMARY	

List of abbreviations

CCDT	Commo alutomio nymuvio	MAC	Mid arm circum-
SGPT		IVIAC	ference
CCOT	transaminase	24240	
SGOT	Serum glutamic	MAMC	Mid arm muscle
	oxalacetic transaminase		circumference
TLC	Total lymphocytic count	TSF	Triceps skinfold.
CHI	Creatinine height index	kcal	Kilo calorie.
MOSF	Multiple organ system	NAR	Nitrogen appearance
	failure		rate
UAR	Urea appearance rate	BUN	Blood urea nitrogen
GI	Gastro intestinal.	IV	Intravenous.
GIT	Gastrointestinal tract	RQ	Respiratory qutioent
CRF	Chronic renal failure	ARF	Acute renal failure
ICU	Intensive Care Unit.		
PICU	Pediatric intensive care	ESLD	End stage liver
	unit		disease
TNF	Tumor necrosis factor	IL	Interleukin.
GABA	Gamma amino butyric	CTZ	Chemoreceptor
0.72.1	acid		trigger zone
PEM	Protein energy mal-	LDH	Lactate
	nutrition.		dehydrogenase
EAR	Estimated average	RDA	Recommended
	requirements		dietary allowances
CVC	Central venous catheter	UL	Upper level
PN	Parenteral nutrition	AI	Adequate intake
TPN	Total parenteral		Branched chain
	nutrition.		aminoacids
REE	Resting energy	AAA	Aromatic
TUDE	expenditure		aminoacids
BEE	Basal energy	EAA	Essential
	expenditure		aminoacids
TEF	Thermic effect of food	BMR	Basal metabolic rate
CHD	Congenital heart	 	Medium chain
	diseases	17101	triglycerides
CHF		VLDL	Very low density
	Congestive heart failure	=	lipoprotein
LCT	Long chain triglycerides		проргосси

INTRODUCTION

Introduction

Acute respiratory failure is a term used to describe an inability to maintain gas exchange. It is the end result of failure of oxygenation or ventilation or both ⁽¹⁾. In acute respiratory failure, the resting energy expenditure increase to 25% due to increase work of breathing although most of increase is abolished by mechanical ventilation ⁽²⁾. Both injury and sepsis have similar effects on the metabolism of nutrients and often occur together ⁽³⁾. Critically ill and injured patients are severely catabolic and hypermetabolic and thus lose significant body mass daily ⁽⁴⁾. Limited body stores of essential nutrients places the critically ill child at increased risk for the development of ill effects caused by under-nutrition e.g. weight loss, growth retardation, fluid and electrolytes imbalance, compromised immune competence, muscle fatigue and poor wound healing ⁽⁵⁾.

Nutritional support of critically ill child signifies the provision of their nutrient substrates during an interruption in the normal process of ingestion, absorption or utilization of food staffs ⁽⁶⁾. The critically ill child is particularly prone to the development of protein-energy malnutrition ⁽⁷⁾. The feeding techniques in intensive care units used for the critically ill patients are: Total parenteral nutrition, combined enteral and parenteral, combined oral and enteral and oral feeding ⁽⁸⁾. The successful treatment of critically ill children requires an understanding of how the child responds to stress and starvation ⁽⁹⁾.

Nutritional requirements In normal and critical conditions

The primary goal of nutritional support is to meet the body energy requirements for metabolic process and tissue repair ⁽⁸⁾. The nutritional requirements of the child are influenced by the rate of growth ,body composition and composition of new growth .Also nutrients requirements are different during the acute phase of critical illness compared with the latter convalescent phase being lower in the former ⁽⁶⁾.

The Food and Nutrition Board in 1989 has revised the identified appropriate dietary allowance for a number of substances that prevent deficiency states in most persons (Table 1). They are currently re-examining ranges of requirements (10). The Food and Nutrition Board in 1997 (11) released new dietary reference intakes (DRIs) for calcium, phosphorous, magnesium ,vit. D and fluoride. DRIs encompass consideration of the estimated average requirements (EAR), the recommended dietary allowances (RDAs), the adequate intake (AI) and the tolerable upper level (UL). The EAR represents the nutrient intake estimated to meet the requirements of a specified indicator of adequacy in 50% of the individuals at a life stage in a gender group (11) EAR is a daily average over time ,generally one week. sufficient to meet the individual The RDA is the daily dietary intake nutrient requirements of 97-98 % of individuals in the life stage and gender group. If the EAR is available, the RDA=+2SD EAR. In those instances, in which there is insufficient scientific evidence to calculate an EAR, the AI is used as an approximation of the average nutrient intake. The 1997 report recommends that AIs be used for all nutrients up to 1 year of age and for calcium, vit D and fluoride for all life stages. Representative values are given in *Table (2)*.

It is likely that as further scientific evidence becomes available, DRIs will replace RDA (11). Substrates can be classified into macronutrient, which have to be supplied in gram amounts and micronutrients which are required in small amounts.

TABLE 1 Food and Nutrition Board, National Academy of Sciences—National Research Council Recommended Dietary Allowances (Revised 1989)*†

Category	· -						Fat	Soluble Vitamin	5			Water	-Soluble VIta	mins				Mi	nerals			
	Age (yr) or Condition				Wei (kg)	gbt‡ (7b)	Height‡ (cm) (in)		Protein (g)	Vitamin A (µg RE)f		Vitamin K (µg)	Vitamin C (mg)	Thiamine (mg)	Riboflavin (mg)	Niacin (mg NE)**	Vilamin B-6 (mg)	Folate (µg)	Vitamin B-12 (µg)	iron (mg)	Zinc (mg)	Iodine (µg)
Infants	0.0-0.5 0.5-1.0	6 9	13 20	60 71	24 28	13 14	375 375	3	5 10	30 35	0.3 0.4	0.4 0.5	5 6	0.3 0.6	25 35	0.3 0.5	6 10	5 5	40 50	10 15		
Children	1-3 4-6 7-10	13 20 28	29 44 62	90 112 132	35 44 52	16 24 28	400 500 700	6 7 7	15 20 30	40 45 45	0.7 0.9 1.0	0.8 1.1 1.2	9 12 13	1.0 1.1 1.4	50 75 100	0.7 1.0 1.4	10 10 10	10 10 10	70 90 120	20 20 30		
Males	11-14 15-18 19-24 25-50 51+	45 66 72 79 77	99 145 160 174 170	157 176 177 176 173	62 69 70 70 68	45 59 58 63 63	1,000 1,000 1,000 1,000 1,000	10 10 10 10 10	45 65 70 80 80	50 60 60 60	1.3 1.5 1.5 1.5 1.2	1.5 1.8 1.7 1.7 1.4	17 20 - 19 19 15	1.7 2.0 2.0 2.0 2.0	150 200 200 200 200 200	2.0 2.0 2.0 2.0 2.0	12 12 10 10	15 15 15 15 15	150 150 150 150 150	40 50 70 70 70		
Females	11-14 15-18 19-24 25-50 51+	46 55 58 63 65	101 120 128 138 143	157 163 164 163 160	62 64 65 64 63	46 44 46 50 50	800 800 800 800 800	8 8 8 8	45 55 60 65 65	50 60 60 60	1.1 1.1 1.1 1.1	1.3 1.3 1.3 1.3 1.2	15 15 15 15 15	1.4 1.5 1.6 1.6 1.6	150 180 180 180 180	2.0 2.0 2.0 2.0 2.0	15 15 15 15 10	12 12 12 12 12	150 150 150 150 150	45 50 55 55 55		
Pregnant Lactating	tst 6 mo 2nd 6 mo					60 65	800 1,300 1,200	10 12 11	65 65	70 95 90	1.5 1.6 1.6	1.6 1.8 1.7	17 20 20	2.2 2.1 2.1	400 280 260	2.2 2.6 2.6	30 15	15 19 16	175 200 200	65 75 75		

^{*}The allowances, expressed as average daily intakes over time, are intended to provide for individual variations among most normal persons as they live in the United States under usual environmental stresses. Diets should be based on a variety of common foods in order to provide other nutrients for which human requirements have been less well defined. See text for detailed discussion of allowances and of nutrients not tabulated.

[†]Designed for the maintenance of good nutrition of practically all healthy people in the United States.

‡Weights and heights of Reference Adults are actual medians for the population in the United States of the designated age, as reported by National Health and Nutrition Examination Survey (NHANES II). The median weights and heights of those younger than 19 years of age were taken from Hamil H, et al: Physical growth: National Center for Health Statistics percentiles. Am J Clin Nutr 32:607, 1979. The use of these figures does not imply that the height-to-weight ratios are ideal.

§Retinol equivalents. I retinol equivalent (RE) = I μg retinol or 6 μg β-carotene. See text for calculation of vitamin A activity of diets as retinol equivalents.

[¶]α-Tocopherol equivalents, 1 mg d-α-tocopherol = 1 mg α-TE. See text for variation in allowances and calculation of vitamin E activity of the diet as α-tocopherol equivalent.

^{**!} NE (niacin equivalent) is equal to 1 mg of niacin or 60 mg of dietary tryptophan.

2 Dietary Reference Intake Values by Life Stage Group

	,						Mag	nesium				Flu	oride
Nutrient Life Stage Group	Calcium	Phosphorus			EAR (mg/d) RDA (mg/d)			Af (mg/d)		Vitamin D	AI ^b (mg/d)		
	A <i>f</i> * (mg/d)	EAR* (mg/d)	RDA ^d (mg/d)	Al ^r (mg/d)	Male	Female	Male	Female	Male	Female	Alos (µg/d)	Male	Female
				100			-	-	30	30	5	0.01	10.0
0–6 mo	210	•	•	275	_	_	-	-	75	75	5	0.5	0.5
6–12 mo	270	•		21)	65	65	80	80			5	0.7	0.7
1-3 y	500	380	460	-	110	110	130	130			5	1.1	1.1
4–8 y	800	405	500	•	200	200	240	240			5	2.0	2.0
9–13 y	1300	1055	1250	-			410	360			5	3.2	2.9
14–18 y	1300	1055	1250	-	340	300	400	310			Š	3.8	3.1
19-30 y	1000	580	700	•	330	255					É	3.8	3.1
31-50 y	1000	580	700	-	350	265	420	320			ıó	3.8	3.1
51-70 y	1200	580	700	•	350	265	420	320			15	3.8	3.1
>70 y	1200	580	700	-	350	265	420	320			15	5.0	2.1
Pregnancy						225		400	_	_	5		2.9
#18 y	1300	1055	1250	•		335	-	350	-		•	_	3.1
19-50 y	1000	580	700	-		290			=				
31~50 y						300		360					
Lactation								740			5	_	2.9
#18 y	1300	1055	1250	•		300		360	•	•	,	_	3.1
19-50 y	1000	580	700	-		255		310	-	•		-	J.1
31-50 y	2300	2.2				265		320					

*All groups except Pregnancy and Lactation are males and females unless separately labeled.

^{*}AI, Adequate Intake. The observed average or experimentally set intake by a defined population or subgroup that appears to sustain a defined nutritional state, such as growth rate, normal circulating nutrient values, or other functional indicators of health. Al is used if sufficient scientific evidence is not available to derive an EAR. For healthy breast-fed infants, Al is the mean intake. Some seemingly healthy individuals may require higher calcium intakes to minimize risk of osteopenia and some individuals may be at low risk on even lower intakes. The AI is not equivalent to an RDA.

EAR, Estimated Average Requirement. The intake that meets the estimated nutrient needs of 50% of the individuals in a group.

⁴RDA, Recommended Dietary Allowance. The intake that meets the nutrient need of almost all (97-98%) of individuals in a group.

^{*}As cholecalciferol. 1 µg cholecalciferol = 40 IU vitamin D.

^{&#}x27;In the absence of adequate exposure to sunlight.

Adapted from Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D. and Fluoride; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine, National Academy of Sciences. Washington, D.C.: National Academy Press, 416 pp., 1997.