Regional Anesthesia in Obese Patients

Essay

Submitted for Partial Fulfillment of Master Degree of Anaesthesia

By

Azza Mohamed Abu Elkhire

(M.B.B.Ch – M.S.)
Faculty of Medicine_ Ain Shams University

Under supervision of

Prof. Dr. Zakaria Abdel Aziz Moustafa

Professor of Anaesthiology and Intensive Care Medicine and Pain Management Faculty of Medicine- Ain Shams University

Dr. Manal Mohamed Kamal

Assistant Professor of Anaesthiology and Intensive Care Medicine and Pain Management Faculty of Medicine- Ain Shams University

Dr. Mayada Ahmed Ibrahim

Lecturer of Anaesthiology and Intensive Care Medicine and Pain Management Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2015

سورة البقرة الآية: ٢٢

First of all, to **Allah** the most merciful for guiding me through and giving me the strength to complete this work the way it is.

I would like to express my deeply felt gratitude to **Prof. Dr. Zakaria Abdel Aziz Moustafa,** Professor of Anaesthiology and Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain Shams University for giving me the chance of working under his supervision. I appreciated his constant encouragement.

Many Thanks for **Dr. Manal Mohamed Kamal**Assistant Professor of Anaesthiology and Intensive Care
Medicine and Pain Management, Faculty of Medicine, Ain
Shams University, for her kind supervision, and great help.

Great appreciation and gratitude to **Dr. Mayada**Ahmed Ibrahim, Lecturer of Anaesthiology and Intensive

Care Medicine and Pain Management, Faculty of

Medicine, Ain Shams University for her great efforts,

valuable guidance and great concern that really supported

the work.

Azza Mohamed Abu Elkhire

Contents

Subjects Page	
List of Abbreviations	I
List of TablesI	
List of Figures	V
Introduction	
Aim of the work	4
Review of literature	
- Chapter (1): Anatomical changes with obes	se
patients	5
- Chapter (2): Physiological and pathological change	es
in obese patients1	16
- Chapter (3): Perioperative management of obes	se
patients2	41
- Chapter (4): Regional versus general anesthesia	in
obese patients	98
- Chapter (5): Ultrasound guided versus ordinar	ry
regional anesthesia in obese patients 1	12
- Chapter (6): Types of regional anesthesia in obes	se
patients11	18
Summary and Conclusion13	38
References	
Arabic summery	

List of Abbreviations

A-aDO2: Alveolar arterial oxygen gradient

ACC: American College of Cardiology

AF : Atrial fibrillation

AGB : Adjustable gastric banding

AHA: American Heart Association

AHI : An apnea / hypopnea index

AO : Atlanto-occipital

ATBF: Adipose tissue blood flow

%BF : Percent of body fat

BMI : Body mass index

BPD: Biliopancreatic diversion

BUN: Blood urea nitrogen

BVI : Body Volume Index

CBC: Complete blood count

COX-2: Cyclooxygenase 2

CPAP: Continuous positive airway pressure

CPNB: Continuous peripheral nerve block

DVT: Deep venous thrombosis

EAT: Epicardial adipose tissue

ECG: Electrocardiogram

ERV : Expiratory reserve volume

EWAT: Epididymal white adipose tissue

FEV1 : Forced expiratory volumes in one second

FFA: Free fatty acid

FRC: Functional residual capacity

E List of Abbreviations &

FVC: Forced vital capacity

GA: General anaesthesia

GERD: Gastroesophageal reflux disease

Hb A1C: Glycated haemoglobin (A1C)

IBW: Ideal body weight

IL: Interleukin

LAD: Left atrial dilatation

LBW: Lean body weight

LFTs: Liver function tests

LMATM: Laryngeal mask airway

LMWH: Low molecular weight heparin

LV: Left ventricle

MetS : Metabolic syndrome

METs: Metabolic equivalents

MI: Myocardial infarction

MO: Morbidly obese

NAFLD: Nonalcoholic fatty liver disease

NF-kB: Nuclear factor kappa B

NIV : Non invasive

NSAIDS: Non-steroidal anti-inflammatory drugs

NYHA: New York heart association

OHS: Obesity hypoventilation syndrome

OSA : Obstructive sleep apnea

OS- : Obesity surgery mortality risk score

MRS

PACU: Post anesthesia care unit

PCV: Pressure controlled ventilation

E List of Abbreviations &

PEEP: Positive end-expiratory pressure

PNB: Peripheral nerve blocks

PSG: Polysomnography

RA : Regional anaesthesia

RAAS: Rennin angiotensin aldosterone system

RV: Right ventricle

RV : Residual volume

RYGB: Roux-en-Y gastric bypass

SG: Sleeve gastrectomy

SHS: Supine hypotension syndrome

SVF : Stromal vascular fraction

TAP: Transversus abdominis plane

TBW: Total body weight

TIA: Transient ischemic attack

TKA: Total knee arthroplasty

TNF- α : Tumor necrosis factor α

TOF: Train-of-four

US : Ultrasound

VBG: Vertical banded gastroplasty

VCV: Volume-controlled ventilation

VTE: Venous thromboembolism

ZEEP: Zero end expiratory pressure

List of Tables

Table No	Title	Page
Table (1)	The major pulmonary physiological	29
	changes.	
Table (2)	The revised cardiac risk index: risk	46
	factors associated with major cardiac	
	complications for noncardiothoracic	
	surgical procedures.	
Table (3)	Electrocardiogram (ECG) findings	48
	associated with morbid obesity.	
Table (4)	Dosing weight scalars for common	62
	perioperative medications.	
Table (5)	Body weight adjustment equations.	63
Table (6)	Characteristics of common ultrasound	117
	transducers and their potential	
	applications in Transducer array	
	Footprint size Frequency range	
	Suggested block sites.	
Table (7)	Direct maternal deaths due to	134
	anaesthesia in United Kingdom 1979-	
	2005.	

List of Figures

Figure No	Title	Page
Fig. (1)	Micro-anatomy of subcutaneous fat.	12
Fig. (2)	Selected adipokines secreted by the	18
	adipocyte/inflammatory cell complex.	
Fig. (3)	Algorithm for preoperative cardio-	50
	pulmonary testing.	
Fig. (4)	Relationship of total body weight, fat	64
	weight, and lean body weight to body	
	mass index in a standard height male.	
Fig. (5)	Optimal patient positioning for	108
	ultrasoundguided infraclavicular	
	brachial plexus block with the arm	
	abducted 90° at the shoulder.	
Fig. (6)	A standard Tuohy-tip epidural needle	114
	and in-plane ultrasound image of a	
	similar Tuohy-tip needle during nerve	
	block performance.	

Introduction

Obesity is a worldwide healthcare problem that is often defined as a condition of abnormal or excessive fat accumulation in adipose tissue to the extent that heath may be impaired. The underlying process is positive energy balance and weight gain.

Obesity is a multisystem chronic pro-inflammatory disorder with increase morbidity and mortality. Adipocytes are far more than storage vessels for lipids, they secrete a large number of physiologically active substances called adipokines that lead to inflammation, vascular, cardiac remodelling, airway inflammation and altered microvasclar flow patterns (*Cullen and Ferguson*, 2012).

Obesity is often expressed with reference to body mass index (BMI) that defined as the body weight in kilogram divided by the square of the body height in meters.

Obesity has defined as BMI more than 30 kg/m^2 and morbid obesity as BMI more than 40 kg/m^2 or BMI more than 35 kg/m^2 with obesity related co morbidity.

BMI alone isn't a good predictor of the distribution of excess body fat; central obesity with elevated visceral fat

levels is associated with greater metabolic impact and complications than widespread subcutaneous fat. BMI may be misleading in patients with significant muscle bulk. It is also critical to understand that patients can have elevated body fat content despite a normal BMI, so called "normal body weight obesity" and this too can have an impact on organ function (*Kosmala et al.*, 2012).

With the risk of metabolic abnormalities and hypertension increasing as the percent of body fat (% BF) increases (*Romero- Corral et al.*, 2010).

The number of obese patients is gradually increasing worldwide. The World Health Organization estimates that by 2015, there will be 2.3 billion overweight (BMI 25-30 Kg/m²) and 700 million obese (BMI >30 Kg/m²) adults worldwide (*WHO*, 2008).

Anatomic and physiological alterations occur in association with obesity, particulary in the airway, cardiovascular, respiratory, gastrointestinal and neurological organ systems. These changes increase the incidence of co-morbidity and cause limitations and problems in anesthesiology procedures (*Leykin et al.*, 2006).

For obese patients, regional anesthesia provides many advantages compared to general anesthesia, such as avoiding airway manipulation, systemic effects of anesthetic agents and provides better post operative pain control (*Ingrande et al.*, 2009). However, the failure rate in regional anesthesia procedures performed in obese patients due to the increased depth of nerve structures, the disappearance of landmarks, and difficulties in positioning (*Parra and Loftus*, 2013).

On the other hand, the increase in the use of ultrasonography in recent years eliminates many limitations. Ultrasonography enables direct visualization of nerve structures, reduction in complications, and identification of new nerve block approaches (*Koscielniak-Nielsen*, 2008).

Aim of the work

To discuss the advantages of regional anesthesia especially ultrasound guided in obese patients versus general anesthesia.

Anatomical changes in obese patient

Obesity is described anatomically as an elevated level of fat storage in the form of hypertrophy (increased size) and/or hyperplasia (increased number) of fat cells, known as adipocytes.

Given the complexities of body composition analysis, the body mass index (BMI) acts as a surrogate for the amount of body fat.

Body mass index is defined as the body weight in kg divided by the square of the body height in metres (kg_m-2). Obesity has been defined as a BMI >30 kg_m-2, and morbid obesity has been referred to as a BMI>40 kg_m-2 or a BMI>35 kg_m-2 with an obesity-related comorbidity.

Body mass index alone is not a good predictor of the distribution of excess body fat; central obesity with elevated visceral fat levels is associated with greater metabolic impact and complications than widespread subcutaneous fat. Body mass index may be misleading in patients with significant muscle bulk. It is also critical to understand that patients can have elevated body fat content despite a normal BMI, so-called "normal weight obesity",

and this too can have an impact on organ function, with the risk of metabolic abnormalities and hypertension increasing as the percent of body fat (%BF) increases (*Kosmola et al.*, 2012).

Deposit of excessive adipose tissue modifies the anatomy of Morbid obese (MO) patients. When severe, these alterations present additional challenges in their anesthetic care. Airway management (face-mask ventilation and tracheal intubation) (Gonzalez et al., 2008), Mechanical ventilation, peripheral and or central vascular access, regional anesthesia and other competencies related to anesthetic care are usually more difficult in these patients (Eichenberger et al., 2002).

The air way

In the obese patient, the airway undergoes progressive adipose Infiltration. This occurs at all levels from the oropharynx through to the glottis and vocal cords. Adipose Infiltration causes progressive narrowing and reduction in airway diameter, which may reduce by 50% or more from the physiological male normal of about 20 mm in the hypopharynx.