ENDOVASCULAR REPAIR OF DESCENDING THORACIC AORTIC ANEURYSM

AN ESSAY

Submitted For Partial Fulfillment of Master Degree in General Surgery

BY MUHAMMAD RIFAAT RYADH ARAB

MB.B.CH. Alexandria University

Supervised by

PROF. DR. HOSSAM EDDIN HASSAN ELAZZAZY

Professor of general surgery Faculty of medicine, Ain Shams University

PROF. DR. WAGIH FAWZY ABD ELMALEK

Professor of general and vascular surgery Faculty of medicine, Ain Shams University

PROF. DR.AHMED MOHAMED KAMAL

Assistant professor of general surgery Faculty of medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2016

Acknowledgment

First thanks to 'ALLAH'

I would like to express my sincere gratitude and deepest appreciation to Prof. Dr. Hossam Eddin Hassan Elazazy, Professor of General Surgery, Faculty of Medicine, Ain Shams University, for kindness, continuous encouragement and guidance throughout the preparation of this work.

I'm deeply grateful to Prof. Dr. Wagih Fawzy Abd Elmalek, Professor of general and vascular surgery, Ain Shams University Faculty of Medicine, Ain Shams University, for the patience, guidance, sincere help and meticulous comments which have enlightened my way throughout this work.

Furthermore, I would like to thank Prof. Dr. Ahmed Mohamed Kamal, Assistant professor of general surgery, Ain Shams University Faculty of medicine, for his great support, advice and kind supervision throughout this work.

Finally, I would like to extend my deepest thanks to my family for their great help and kind support.

Last but not least I am deeply indebted to my professors $\mathcal L$ my friends who without them the completion of this work wouldn't have been possible.

List of Contents

Subject	Page
-List of abbreviations	II
-List of tables	III
-List of figures	IV
-Introduction	1
-Aim of work	3
-Surgical Anatomy of the descending thoracic aorta	4
- Pathophysiological considerations of	
descending	6
thoracic aortic aneurysm	
-Classification	19
-Natural history & Clinical presentation	23
-Investigations	32
-Endovascular repair of descending TAA (An	
overview)	44
 Indications & Contraindications 	
 Requests 	
 Equipment& Technique 	
• Results	
 Comparison with other methods of 	
treatment	
-English summary	87
-References	
-Arabic summary	

List of Abbreviations

Abbreviation	Meaning
AoD	Aortic Dissection
BSA	Body Surface Area
CT	Computed Tomography
CVA	CerebroVascular Accident
DTA	Descending Thoracic Aorta
EDS	Ehlers-Danlos syndrome
ER	Endoscopic Repair
ERK	Extracellular signal-regulated kinases
FDA	Food and Drug Administration
IMH	IntraMural Hematoma
IVUS	Intravascular ultrasound
LCCA	Left Common Carotid Artery
LSA	Left Subclavian Artery
MDCT	Multi-Detector Computed Tomography
MFS	Marfan syndrome
MIP	Maximum Intensity Projection
MMP	Matrix Metalloproteinases
MR	Magnetic Resonance
MRA	Magnetic Resonance Angiography
MRI	Magnetic Resonance Imaging
OAR	Open Aneurysm Repair
PAU	Penetrating Aortic Ulcer
SCI	Spinal Cord Ischemia
SMA	Superior Mesenteric Artery
SR	Surgical Repair
TA	Thoracic Aneurysm
TAA	Thoracic Aortic Aneurysm
TAAA	Thoraco-Abdominal Aortic Aneurysm
TEE	Trans-Esophageal Echocardiography
TEVAR	Thoracic Endovascular Aortic Repair
TGF	Transforming Growth Factor

List of Tables

No	Title	Page
01	Disorders associated with Thoracic Aortic	11
	Aneurysms.	
02	Ideal Device Components of an Aortic Stent-	48
	Graft.	

List of Figures

No	Title	Page
01	Anatomy of the descending thoracic aorta	5
02	Crawford classification of TAAA	21
03	Modified TAAA classification	22
04	Absolute change in aortic growth rate as a	24
	function of size	
05	Yearly rates of rupture, dissection, or death	25
	based on aortic size	
06	The incidence of negative events (rupture,	26
	acute dissection, and death) as a function of	
	growth rate	
07	Risk of aortic complications by aortic	27
	diameter and body surface area (BSA), with	
	aortic size index given within chart	
08	Chest radiograph of a patient with large but	33
	well-localized aneurysm of mid-descending	
	thoracic aorta	
09	Helical CT with reconstruction	35
10	A through C, Helical CT with reconstruction	36
	showing the variation of aortic measurement	
	with changes in axial plane	
11	Drawing and contrast-enhanced computed	37
	tomography images of a degenerative extent	
	II TAAA	
12	Three-dimensional rendering of the entire	39
	aorta in a patient with a descending thoracic	
	aortic aneurysm	
13	MRA of Aorta showing Crawford Type II	41
	TAAA and MRA of Aorta showing	
	Intramural Thrombus in TAAA	
14	First-generation stent graft	56
15	Second generation stent graft	57
16	Gore TAG thoracic endoprosthesis	59

No	Title	Page
17	Medtronic, Talent Thoracic Stent Graft	60
	System	
18	Cook Zenith TX2 thoracic endograft	62
19	E-vita thoracic stent graft with 22F delivery	63
	System	
20	Proximal stent graft deployment at the	66
	proximal descending aorta	
21	Typical stent graft after final accomplishment	66
	of the procedure	
22	Roentgenogram of multiple stent grafts	67
	deployed in thoracic aorta	
23	Thoracic aneurysm treatment by	68
	endovascular stent grafting	
24	Endoleak definitions for TAA	74
25	Radiographic appearance of endoleaks	75
26	Proportion of patients who developed SCI	82

ABSTRACT

Thoracic endovascular aortic repair (TEVAR) represents an attractive alternative to open surgical repair in the treatment of descending thoracic aortic pathologies. Any decision to offer a patient with an aneurysm of the descending thoracic aorta a procedure, either open or endovascular, must balance the patient's expected prognosis and life expectancy without intervention against the risk of undergoing the procedure. At present, for descending thoracic aorta repairs, there is no level A or B evidence (results from prospective, randomized trials) to compare medical therapy with surgical intervention. Furthermore, there is no level A or B evidence comparing the results of open procedures with endovascular stent-graft procedures

Key words: Endovascular, Aneurysms, TEVAR, Descending, Thoracic Aorta, surgery

Introduction

An aneurysm is defined as a permanent dilatation of an artery to at least one and half of its normal diameter at a given location. It is the most common condition of the thoracic aorta that requires surgical treatment (*Logan and Rice*, 1987).

For the descending thoracic aorta, a significant aneurysmal dilatation is usually defined as an aorta twice the diameter of the patient's contiguous normal aortic caliber. Thus, in an average-height older man with an expected distal aortic arch diameter of 2.8 cm, a proximal descending aortic dilatation measuring 5.6 cm or greater is defined as aneurysmal. (Svensson and Crawford, 1997).

The prevalence of thoracic aortic aneurysms (TAAs) has appeared to triple in the two most recent decades. Thoracic aortic aneurysms are now estimated to affect 10 of every 100,000 elderly adults, with 30% to 40% of these being descending thoracic aortic aneurysms (*Bavaria et al.*, 2007).

The majority of aneurysms are degenerative; other causes include atherosclerotic, dissecting, genetic causes as in Marfan's syndrome, post inflammatory and pseudo-aneurysms. The mean age of diagnosis is 59–69 year with a male predominance of 2:1–4:1. The 5-year survival rates of patients with thoracic and

abdominal aortic aneurysms not surgically treated is ~20 and 16–19%, respectively (*Davies et al.*, 2006).

Open surgical repair using prosthetic graft interposition is the conventional treatment for TAAs mainly because of its feasibility and effectiveness in excluding the degenerated aorta from the systemic circulation. Open surgical repair of TAAs is associated with significant perioperative complications including 30- day mortality and paraplegia, with rates of 4.8% and 4.6% respectively. Stroke and renal failure are also important complications to be considered (*Lemaire et al.*, 2012).

Since the introduction of thoracic endovascular aortic repair (TEVAR) using stent grafts for complicated diseases of the descending thoracic aorta, there has been debate regarding the safety, efficacy, and durability of this approach (*Cheng et al.*, 2010).

As "minimally invasive" endovascular treatment has become technically feasible, initially with homemade first generation grafts and now with commercially available thoracic endografts, it is being offered as an attractive treatment option to patients. Thoracic aortic endografts have been used with early success in small- to moderate-sized, retrospective, single-center series (*Bavaria et al.*, 2007).

Aim of Work

The aim of the study is to review endovascular repair as a relatively recent modality for the management of descending thoracic aortic aneurysms. It still requires further elaboration of its efficacy, durability and risks. In this essay we are trying to shed light upon its indications, risks and benefits.

Surgical anatomy of the descending thoracic aorta

Course:

The thoracic aorta is the segment of descending aorta confined to the posterior mediastinum. It begins at the level of the lower border of the fourth thoracic vertebra, continuous with the aortic arch, and ends anterior to the lower border of the twelfth thoracic vertebra in the diaphragmatic aortic aperture. At its origin it is left of the vertebral column; as it descends it approaches the midline and at its termination is directly anterior to it (*Hiratzka et al.*, 2010).

Relations:

Anterior to the descending thoracic aorta, from above down, are the left pulmonary hilum, the pericardium separating it from the left atrium, oesophagus and diaphragm. Posterior are the vertebral column and hemiazygos veins. Right lateral are the azygos and thoracic duct, the right pleura and lung. Left lateral are the pleura and lung. The oesophagus, with its plexus of nerves, is right lateral above, but becomes anterior in the lower thorax, and close to the diaphragm it is left anterolateral. To a limited degree, the descending aorta and oesophagus are mutually spiralized (*Gray et al.*, 2008).

Branches:

The thoracic aorta provides visceral branches to the pericardium, lungs, bronchi and oesophagus, and parietal branches to the thoracic wall (*Gray et al.*, 2008).

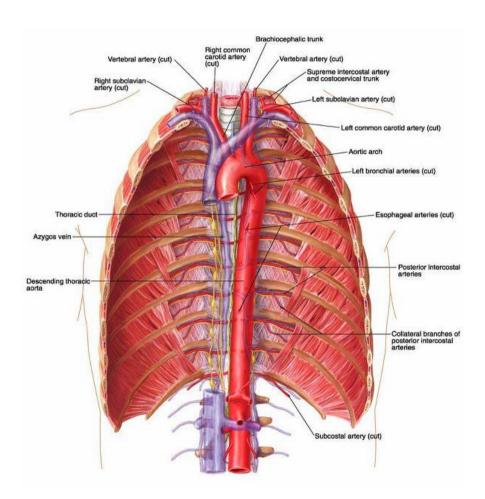


Figure 01: Anatomy of the descending thoracic aorta (*Patrick and Tomas, 2009*).

Pathophysiological considerations of descending thoracic aortic aneurysm

What is an aortic aneurysm?

The term *aortic aneurysm* refers to a pathological dilatation of the normal aortic lumen involving one or several segments. One useful criterion defines aortic aneurysm as a permanent localized dilatation of the aorta having a diameter at least 1.5 times that of the expected normal diameter of that given aortic segment, although no definition is universally accepted (**Johnston KW et al., 1991**).

A descending thoracic aortic (DTA) aneurysm is defined as aneurysm involving any portion of the thoracic aorta distal to the origin of the left subclavian artery. It can involve varying parts of the DTA and may extend to the abdominal aorta (*Puchakayala and Lau*, 2006).

Incidence

Aneurysm is the most common condition of the thoracic aorta requiring surgical treatment. During the first half of the $20^{\rm th}$ century, thoracic aortic aneurysms were far more common than

abdominal aortic aneurysms because of the predominance of infectious aneurysms in the thoracic aorta. In 1952, the ratio of thoracic to abdominal aortic aneurysms was 2 to 1 in autopsy studies. By 1964, this ratio had declined to less than 1 to 1, primarily as a result of the decline in the incidence of syphilitic aneurysms (*Kouchoukos and Dougenis*, 1997).

Annually, thoracic aortic aneurysms affect approximately 6 persons per 100,000 populations, and the descending thoracic aorta is involved in about 40% of those cases (*Gowda et al.*, 2003).

Overall, men are affected twice as often as women (68% vs. 32%) and are affected at younger ages as well, with male patients having a mean age of 60 years and female patients a mean age of 67 years. However the male predominance is most striking at young ages, with males outnumbering females 4:1 at ages less than 50 years. With increasing age, however, the difference lessens, and among those older than 75 years, males and females are equally represented (*Isselbacher*, 2007).