

BEHAVIOR OF HIGH STRENGTH REINFORCED CONCRETE COLUMNS UNDER CENTRIC AND ECCENTRIC LOADS

\mathbf{BY}

Heba Mustafa Mahmoud Mohamed

A thesis submitted to the
Faculty of Engineering; Cairo University
in partial fulfillment of
the requirements for the M.Sc. Degree
in
STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING
CAIRO UNIVERSITY
EGYPT
2016

BEHAVIOR OF HIGH STRENGTH REINFORCED CONCRETE COLUMNS UNDER CENTRIC AND ECCENTRIC LOADS

BY

Heba Mustafa Mahmoud Mohamed

A thesis submitted to the
Faculty of Engineering; Cairo University
in partial fulfillment of
the requirements for the M.Sc. Degree
in
STRUCTURAL ENGINEERING

Under the supervision of

Prof. Dr.\ Hany Mohamed El-Hashimy

Professor of concrete structures
Structural Engineering Department
Faculty of Engineering
Cairo University

Dr.\ Nasser F. H. EL-Shafey

Assc. Professor

Structural Engineering Department

Faculty of Engineering

Cairo University

FACULTY OF ENGINEERING
CAIRO UNIVERSITY
EGYPT
2016

BEHAVIOR OF HIGH STRENGTH REINFORCED CONCRETE COLUMNS UNDER CENTRIC AND ECCENTRIC LOADS

By Heba Mustafa Mahmoud Mohamed

A Thesis Submitted to the
Faculty of Engineering; Cairo University
in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Ahmed Sherif Essawy,	External Examiner
Prof. Dr. Magdy El-Sayed Kassem,	
Prof. Dr. Hany Mohamed El-Hashi	my, Thesis Main Supervisor
Assc. Prof. Dr. Nasser F. H. El-Shafe	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Heba Mustafa Mahmoud Mohamed

Date of Birth: 22/9/1981 **Nationality:** Egyptian

E-mail: Heba_mustafa@hotmail.com

Phone: 01288477557

Address: 3 El-Salam St., El-Thalathiny St.

Omrania, Giza, Egypt.

Registration Date: 1/10/2012
Awarding Date: / / 2016.

Degree: Master of Science
Department: Structural Engineering

Supervisors: Prof. Dr. Hany Mohammed El-Hashimy (Thesis main advisor)

Assc. Prof. Dr. Nasser F. H. El-Shafey (Member)

Examiners: Prof. Dr. Ahmed Sherif Essawy (External examiner)

Professor of Concrete Structures, Ain Shams University

Prof. Dr. Magdy El-Sayed Kassem (Internal examiner)

Prof. Dr. Hany Mohammed El-Hashimy (Thesis main supervisor)

Assc. Prof. Nasser F. H. El-Shafey (Member)

Title of Thesis:

Behavior Of High Strength Reinforced Concrete Columns Under Centric And Eccentric Loads **Key Words:**

High Strength Concrete, High Strength columns, High strength concrete columns under Centric and Eccentric Loads, Nonlinear Finite element analysis of high strength concrete columns.

Summary:

Interest in structural engineering is more growingly focused on using high performance and high strength structural materials. Concrete is eventually among the most world widely used in construction. Use of high strength concrete (HSC) is mainly attractive in the design of columns and vertical carrying members. The supplemented gain in compressive strength leads to a satisfactory diminution of the cross-sections; as such members are mainly subjected to centric & eccentric forces introduced by the gravity loads and wind pressure/seismic forces. This thesis presents an analytical investigation about the behavior of squared, columns made of variable strength concrete; under axial and eccentric loads. The research program included 34 columns; all have a squared cross-section (200x200) mm and 3000 mm height. They were arranged to enable investigating the following parameters: concrete characteristic strength (f_{cu}); ranging between 25 & 100 N/mm²) - Longitudinal reinforcement ratio (µ); ranging between 1.13 and 2.26 % - Transverse steel volumetric ratio (μ_{vst}); ranging between 0.321% and 0.57%. The load eccentricity/depth ratio (e/t) ranged between 0.0, 0.125, 0.25 and 0.75. The study includes non-linear finite element models prepared for the columns and structurally analyzed using an available nonlinear finite element program appropriate for presenting the non-linear behavior of concrete and steel. Concrete cracking was also included in the analysis. The effect of the above parameters on column ultimate load, mid-height, lateral displacement, and columns cracking patterns is reported and discussed.

Acknowledgements

First of all, I want to thank Allah for giving me health and patience to complete this work.

I want to express my sincere gratitude and indebtedness to my research supervisors, **Prof. Dr.\ Hany El-hashimy**, and **Dr.\ Nasser F. H. El-shafey** for their consistent guidance throughout this study, and their efforts in reviewing the manuscript are greatly appreciated.

I want to thank all people assisted this research in various ways.

TABLE OF CONTENTS

	page
ACKNOWLEDGEMENTS	I
TABLE OF CONTENTS	II
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VII
ABSTRACT	XIII
Chapter 1: Introduction	1
1.1 General	1
1.2 Objectives	1
1.3 Scope	2
1.4 Outline of this thesis:	3
Chapter 2: Literature review	4
2.1 Definition of high strength concrete	4
2.1.1 Upper limits on strength of concrete in design codes	4
2.1.2 Main components of high strength concrete	5
2.1.3 Comparison between high and normal strength concrete	5
2.1.4 Confinement Steel Requirement	6
2.1.5 Definition of Ductility Capacity	10
2.2 EVALUATION OF CONCENTRIC AND ECCENTRIC COLUMN CAPACITY	12
2.2.1 Axial load capacity of column in ACI 318–14 and Canadian code CSA23.3-14	12
2.2.2 Interaction between axial force and bending moment	13
2.3 CONFINED COLUMN BY STIRRUPS	14
2.4 previous works	15
2.6 Remarks from previous work	32

Chapter 3:Finite Element Modeling	33
3.1 Introduction	33
3.2 ELEMENT TYPES	34
3.3 Real constants	37
3.4 Nonlinear finite element analysis (NLFEA) using an available nonlinear finite element program	37
3.5 MATERIAL PROPERTIES IN ANSYS PROGRAM AN AVAILABLE NONLINEAR FINITE ELEMENT PROGRAM	40
3.5.1 Material properties for concrete	44
3.5.2 Material properties for reinforcement and steel plates	47
3.6 BOND BETWEEN CONCRETE AND STEEL BARS IN AN AVAILABLE NONLINEAR FINITE ELEMENT PROGRAM	49
3.7 Modeling Methodology	49
3.7.1 Building the model and meshing	49
3.7.2 Boundary conditions and loads	50
3.7.3 parametric study	51
3.7.4 Nonlinear solution and convergence criterion	51
3.7.5 Failure definition	53
3.7.6 Crack pattern given by an available nonlinear finite element program	53
3.8 VERIFICATION OF FINITE ELEMENT MODEL	55
Chapter 4:Finite Element Analysis Results	59
4.1 Introduction	59
4.2 Analytical results of analyzed columns	65
4.2.1 Effect of Concrete strength	65
4.2.1.1 Mid-height displacement	65
4.2.1.2 Vertical displacement	65
4.2.1.3 Failure load	68
4.2.1.4 Cracking pattern	69
4.2.2 Effect of applied load eccentricity	85
4.2.2.1 Mid-height displacement	85

4.2.2.2 Vertical displacement	85
4.2.2.3 Failure load	86
4.2.2.4 Cracking pattern	86
4.2.3 Effect of Longitudinal steel ratio	90
4.2.3.1 Mid-height displacement	90
4.2.3.2 Vertical displacement	90
4.2.3.3 Failure load	92
4.2.3.4 Cracking pattern	93
4.2.4 Effect of spacing between stirrups	102
4.2.4.1 Mid-height displacement	102
4.2.4.2 Vertical displacement	102
4.2.4.3 Failure load	103
4.2.4.4 Cracking pattern	103
4.2.5 Effect of diameter size of stirrups	108
4.2.5.1 Mid-height displacement	108
4.2.5.2 Vertical displacement	108
4.2.5.3 Failure load	108
4.2.5.4 Cracking pattern	109
4.3 Interaction diagram of studied columns	114
4.3.1 Factors used to draw interaction diagrams for HSC section	114
4.3.2 Applicability of interaction diagram on Analyzed columns	115
4.4 FORMULAS FROM EGYPTIAN CODE OF PRACTICES	119

Chapter 5: Summary and conclusions	123
5.1 Summary	123
5.2 Conclusions	124
5.3 RECOMMENDATIONS FOR FUTURE WORK	127
REFERENCES	128

List of Tables

	page
Chapter 2: Literature review	
Table 2.1: Summary of confinement equations for rectangular columns as per different codes [5]	8
Table 2.2: Properties of tested square columns in the experimental[6]	19
Table 2.3: Comparison between test and analytical results[6]	20
Table 2.4: Details of column groups[18]	25
Table 2.5: Properties of hardened concrete at 28 days (mean strength of three specimens) [18]	26
Table 2.6: Results from tests on slender columns [18]	26
Table 2.7: Tested columns properties details[19]	29
Chapter 3:Finite Element Modeling	
Table 3.1: Properties of study square column in FE program	41
Table 3.2: Material properties inputs in an available nonlinear finite element program for concrete	45
Table: 3.3: Material properties inputs in an available nonlinear finite element program for reinforcement and steel plates	47
Table 3.4: Material properties inputs in an available nonlinear finite element	40
program for reinforcement and steel plates	48
Table 3.5: material properties and reinforcement details for selected columns	55
Table 3.6: Load capacities and corresponding mid–height displacements for	57

Chapter 4:Finite Element Analysis Results

Table 4.1: Properties of study square column in FE program	62
Table 4.2: F.E results summary according to ECP 203	63
Table 4.3: F.E results summary according to ACI 363.2R	64
Table 4.4: Difference between Analytical results and interaction diagrams	118
Table 4.5: The failure modes for studied columns	119
Table 4.6: Difference between Analytical and Theoretical results	121
Table 4.7: Difference between Analytical results and ECP-2007 equation while failure	122

List of Figures

	page
Chapter 2: Literature review	
Figure 2.1: Confinement of concrete in rectangular or square column [5]	9
Figure 2.2: Relationship between curvature and displacement ductility [9]	10
Figure 2.3: Definition of ductility [9]	11
Figure 2.4: Interaction diagram between axial force and bending moment	13
Figure 2.5: Stress – strain curves for confined and unconfined concrete	15
Figure 2.6: Effect of concrete strength, axial load level and longitudinal steel ratio on ductility J.C.M. Ho et al. (2010) [8]	16
Figure 2.7: Columns section dimension and reinforcement, and Reinforcement arrangement along column height [6]	18
Figure 2.8: The load –mid height displacement for tested columns [6]	21
Figure 2.9: : Geometry, test set up, and details of cross section for tested columns in Ghoneim (2002) [12]	22
Figure 2.10: Load paths due to effect of slenderness Ghoneim (2002) [12]	22
Figure 2.11: Geometry and reinforcement configuration of columns–group (a, b) C. Claeson and K. Gylltof (1998) [18]	24
Figure 2.12: Loading set up for slender columns (dimensions in millimeters) [18]	25
Figure 2.13: Load versus mid–height deflection relation for 3.0 m high–strength concrete column subjected to different initial load eccentricities [18]	27
Figure 2.14 Overall view of test specimen [19]	28

Chapter 3:Finite Element Modeling	
Figure 3.1: Solid 65 elements, an available nonlinear finite element program manual set [3]	34
Figure 3.2: Models for Reinforcement in Reinforced Concrete (Wolanski 2004) [11]: (a) Discrete; (b) Embedded; and (c) Smeared	36
Figure 3.3: Link8, 3–D spar element an available nonlinear finite element program manual set [3]	36
Figure 3.4: Second—order effect on column capacity in nonlinear analysis[21]	38
Figure 3.5: Simplified compressive uniaxial stress–strain curve for concrete MacGregor [21]	39
Figure 3.6: Simplified tensile uniaxial stress–strain curve for steel[21]	39
Figure 3.7: Geometry of model in mm, F stands for overall force	43
Figure 3.8: Input Compressive uniaxial Stress–strain curves for concrete, output Compressive uniaxial Load–strain curves for concrete	46
Figure 3.9: Stress-strain curves for steel reinforcement	48
Figure 3.10: Final View for REF	49
Figure 3.11: Boundary conditions	50
Figure 3.12: Loading Model	50
Figure 3.13: Newton–raphson iterative solutions (2 load increments)[3]	52
Figure 3.14: Integration points of concrete element Solid65 by Kachlakev [14]	54
Figure 3.15: Cracking signs for concrete elements [3]	54

Figure 2.15:Details of reinforcement column[19]

30

55

56

56

Figure 3.16: Typical cracking signs occurring in finite element models: (a)

Figure 3.17: Tested column set up and geometry in M.F.Belal (2014)[2]

Figure 3.18: Tested column set up and geometry in C. Claeson(1998)[18]

flexural cracks; (b) compressive cracks; (c) diagonal tensile cracks,

Kachlakev [14]

Figure 3.19: Comparison between experimental and analytical load capacities for analyzed columns	58
Figure 3.20: Comparison between experimental and analytical Displacement for analyzed columns	58
Chapter 4:Finite Element Analysis Results	
Figure 4-1: Comparison between mid–height displacement by ACI and ECP for C_1 , C_4 , C_7 , C_{13} , C_{21} , and C_{27} with f_{cu} = 25, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.0	71
Figure 4-2: Comparison between mid–height displacement by ACI for C_1 , C_4 , C_7 , C_{13} , C_{21} , and C_{27} with f_{cu} = 25, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.0	71
Figure 4-3: Comparison between mid–height displacement by ACI and ECP for C_2 , C_5 , C_8 , C_{14} , C_{22} , and C_{28} with f_{cu} = 25, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.125	72
Figure 4-4: Comparison between mid–height displacement by ACI for C_2 , C_5 , C_8 , C_{14} , C_{22} , and C_{28} with f_{cu} = 25, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.125	72
Figure 4-5: Comparison between mid–height displacement by ACI and ECP for C_3 , C_6 , C_9 , C_{15} , C_{23} , and C_{29} with f_{cu} = 25, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.25	73
Figure 4-6: Comparison between mid–height displacement by ACI for C_3 , C_6 , C_9 , C_{15} , C_{23} , and C_{29} with f_{cu} = 25, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.25	73
Figure 4-7: Comparison between mid–height displacement by ACI and ECP for C_{16} , and C_{30} with f_{cu} = 65, and 100 N/mm ² at e/t=0. 75	74
Figure 4-8: Comparison between mid–height displacement by ACI for C_{16} , and C_{30} with f_{cu} = 65, and 100 N/mm ² at e/t=0. 75	74
Figure 4-9: Comparison between vertical displacement by ACI and ECP for C_1 , C_4 , C_7 , C_{13} , C_{21} , and C_{27} with f_{cu} = 25, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.0	75
Figure 4-10: Comparison between vertical displacement by ACI for C_1 , C_4 , C_7 , C_{13} , C_{21} , and C_{27} with $f_{cu} = 25$, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.0	75
Figure 4-11: Comparison between vertical displacement by ACI and ECP for C_2 , C_5 , C_8 , C_{14} , C_{22} , and C_{28} with $f_{cu} = 25$, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.125	76
Figure 4-12: Comparison between vertical displacement by ACI for C_2 , C_5 , C_8 , C_{14} , C_{22} , and C_{28} with f_{cu} = 25, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.125	76
Figure 4-13: Comparison between vertical displacement by ACI and ECP for C_3 , C_6 , C_9 , C_{15} , C_{23} , and C_{29} with f_{cu} = 25, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.25	77

Figure 4-14: Comparison between vertical displacement by ACI for C_3 , C_6 , C_9 , C_{15} , C_{23} , and C_{29} with $f_{cu} = 25$, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.25	77
Figure 4-15: Comparison between vertical displacement by ACI and ECP for for C_{16} , and C_{30} with $f_{cu}=65$, and 100 N/mm^2 at e/t=0. 75	78
Figure 4-16: Comparison between vertical displacement by ACI for C_{16} , and C_{30} with $f_{cu}=65$, and 100 N/mm^2 at e/t=0. 75	78
Figure 4-17: Comparison between failure load by ACI and ECP for C_1 , C_4 , C_7 , C_{13} , C_{21} , and C_{27} with $f_{cu} = 25$, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.0	79
Figure 4-18: Comparison between failure load by ACI for C_1 , C_4 , C_7 , C_{13} , C_{21} , and C_{27} with $f_{cu} = 25$, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.0	79
Figure 4-19: Comparison between failure load by ACI and ECP for C_2 , C_5 , C_8 , C_{14} , C_{22} , and C_{28} with $f_{cu}=25$, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.125	80
Figure 4-20: Comparison between failure load by ACI for C_2 , C_5 , C_8 , C_{14} , C_{22} , and C_{28} with $f_{cu} = 25$, 35, 55, 65, 75, and 100 N/mm ² at e/t=0.125	80
Figure 4-21: Comparison between failure load by ACI and ECP for C_3 , C_6 , C_9 , C_{15} , C_{23} , and C_{29} with $f_{cu} = 25$, 35, 55, 65, 75, and 100 N/mm ² at e/t=0. 25	81
Figure 4-22: Comparison between failure load by ACI for C_3 , C_6 , C_9 , C_{15} , C_{23} , and C_{29} with $f_{cu}=25$, 35, 55, 65, 75, and 100 N/mm ² at e/t=0. 25	81
Figure 4-23: Comparison between failure load by ACI and ECP for C_{16} , and C_{30} with $f_{cu}=65$, and $100\ N/mm^2$ at $e/t=0.75$	82
Figure 4-24: Comparison between failure load by ACI for C_{16} , and C_{30} with $f_{cu}=65$, and $100\ N/mm^2$ at $e/t=0.75$	82
Figure 4-25: Cracking pattern for C_{16} with $e/t=0.0~f_{cu}=65~N/mm^2$	83
Figure 4-26: Cracking pattern for C_{30} with $e/t=0.75~f_{cu}=100~N/mm^2$	84
Figure 4-27: Comparison between lateral displacement for C_{13} , C_{14} , C_{15} , and C_{16} for $f_{cu} = 65 \text{ N/mm}^2$	87
Figure 4-28: Comparison between Vertical displacement for C_{13} , C_{14} , C_{15} , and C_{16} for $f_{cu} = 65 \text{ N/mm}^2$	87
Figure 4-29: Comparison between failure load for C_{13} , C_{14} , C_{15} , and C_{16} for $f_{cu} = 65 \text{ N/mm}^2$	88
Figure 4-30: Comparison between Analysis load and mid height lateral displacement for C_{13} , C_{14} , C_{15} , and C_{16} for $f_{cu} = 65 \text{ N/mm}^2$	88
Figure 4-31: Cracking pattern for C_{27} with $e/t=0.75$ $f_{cu}=100$ N/mm ²	89