STUDY OF GASTRIC EMPTYING IN AGED RATS

Thesis

Submitted for partial fulfillment of the master degree in Physiology

Presented byAhmed Mohamed Mohamed Salah Eldeen

(M.B.B.CH. Ain Shams university)

Supervised by

Prof. Dr. Ebtessam Ahmed Abou Shady

Professor of physiology
Faculty of Medicine – Ain shams university

Dr. Nehal Mohamed Bahgat

Assistant professor of physiology Faculty of Medicine – Ain shams university

Dr. Enas A. Abd El-Hady

Lecturer of physiology
Faculty of Medicine – Ain shams university

Faculty of medicine
Ain Shams University
2011

دراسة إفراغ المعدة في الفئران المسنة

رسالة مقدمة من

الطبيب/ أحمد محمد صلاح الدين

بكالوريوس الطب و الجراحة توطئة للحصول على درجة الماجستير في العلوم الطبية الأساسية (الفسيولوجيا)

تحت إشر اف

الأستاذة الدكتورة/ إبتسام أحمد أبو شادى

أستاذ الفسيولوجيا كلية الطب- جامعة عبن شمس

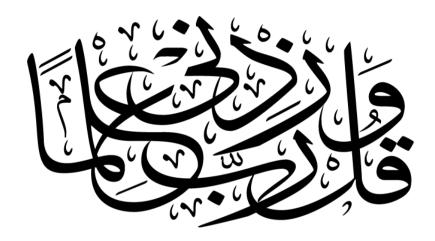
الدكتورة/ نهال محمد بهجت

أستاذ مساعد الفسيولوجيا كلية الطب- جامعة عبن شمس

الدكتورة/ إيناس عبد العزيز عبد الهادي

مدرس الفسيولوجيا كلية الطب- جامعة عبن شمس

قسم الفسيولوجي كلية الطب جامعة عين شمس 2011


Summary & Conclusion

The present study was planned to investigate the changes in gastric emptying and motility in aged rats and their contribution to changes in food intake in addition to the role of NO in gastric emptying.

The present study was performed on 42 male Sprague Dawley rats (10 adults, B.W. 160-210 g) and (32 aged, B.W. 300-475 g). The rats were randomly allocated into the following two main groups;

- **1. Group I;** 10 adult rats (9-12 months old).
- **2. Group II;** comprised of 32 aged rats (18-30 months old) randomized into the following 3 subgroups.
 - a) Aged untreated rats: 10 aged rats. These rats were given normal saline daily by gavage in a dose of 1ml/Kg B.W. for 14 days, used as control group for L-arginine and L-NAME treated groups.
 - b) Aged L-arginine treated rats: 11 aged rats treated with the nitric oxide precursor; L-arginine for two weeks. L-arginine was freshly dissolved in normal saline prior to injection (300 mg/1 ml), and then injected intraperitoneally in a dose of 300 mg/Kg B.W.

صَّنَاكُ فَيَ اللَّهُ الْعُظَامِينَ،

(سورة طه – آية 114)

Acknowledgement

First of all, I thank **ALLAH** for blessing this work as a part of his generous help throughout my life.

I would like to express my sincere gratitude and deepest thanks to **Prof. Dr. Ebtessam Ahmed Abou Shady**, Professor and former head of Physiology department, Faculty of Medicine, Ain Shams University, for her scientific support, judicious guidance, generous help and valuable supervision through the whole work. To her I am deeply indebted and admit I am so much privileged and honored to have her as my supervisor, I really owe her more than I can express.

I would like to display my indebtedeness to **Dr. Nehal Mohamed Bahgat**, Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, for her wise council, expert guidance, faithful advice, keen supervision and valuable instructions which helped me to overcome many difficulties.

I would like to display my indebtedness to **Dr. Enas A. Abd El-Hady**, Lecturer of physiology, Faculty of Medicine, Ain Shams University, for her limitless help, kind encouragement and generous assistance throughout the whole work.

I would also like to acknowledge my deepest gratitude and appreciation to **Prof. Dr. Faten Mahmoud Diab**, the Head of Physiology Department, Faculty of Medicine, Ain Shams University, for her support and encouragement.

Finally, I would like to express my deepest gratitude to all my family and all who did help me and supported me throughout this work. God only knows how much I am indebted to them and I am really lucky to have their support.

Contents

	<u>Page</u>
Introduction	1
Aim of work	4
Review of literature	5
Materials and methods	37
Results	49
Discussion	75
Summary and conclusion	88
References	92
Arabic summary	119

Lists of tables

Table no.	Title	Page
1	Constituents of the standard rat chow.	37
2	Initial and final body weights (BW, g) in the four studied groups.	53
3	Cumulative results of initial and final body weight changes (BW, g) in the four studied groups.	54
4	Daily food intake (g/day) in adult control rats throughout the 2-week study period.	56
5	Daily food intake (g/day) in aged untreated rats throughout the 2-week study period.	57
6	Daily food intake (g/day) in L-Name- treated -aged rats throughout the 2-week study period.	58
7	Daily food intake (g/day) in L-Arginine- treated aged rats throughout the 2-week study period.	59
8	Mean food intake throughout the two-week study period (g/day) in the four studied groups	61
9	Cumulative results of mean food intake throughout the two-week study period (g/day) in the four studied groups	62
10	Gastric emptying (%) in the four studied groups.	64

11	Cumulative results of gastric emptying (%) in the four studied groups.	65
12	Parameters of gastric motility in the adult control rats as regard wave frequency (wave/sec.), wave duration (sec.), tension (mg / mg tissue) and motility index (motility index /sec.).	67
13	Parameters of gastric motility in aged untreated rats as regard wave frequency (wave/sec.), wave duration (sec.), tension (mg / mg tissue) and motility index (motility index /sec.).	68
14	Parameters of gastric motility in the L-NAME –treated aged rats as regard wave frequency (wave/sec.), wave duration (sec.), tension (mg / mg tissue) and motility index (motility index /sec.).	69
15	Parameters of gastric motility in the L-arginine – treated aged rats as regard wave frequency (wave/sec.), wave duration (sec.), tension (mg / mg tissue) and motility index (motility index /sec.).	70
16	Cumulative results of gastric motility in the four studied groups as regard wave frequency (wave/sec.), wave duration (sec.), tension (mg / mg tissue) and motility index (motility index /sec.).	71

Lists of figures

Figure no.	Title	Page
1	Phases of gastric emptying.	28
2	Overview of the rat alimentary canal	40
3	The interior structure of the rat stomach.	43
4	Preparation of the strips of gastric antrum:	43
5	The water bath used for the study of the isolated muscle strip of gastric antrum.	44
6	Calibration curve.	46
7	Changes in initial and final body weights (g) in the four studied groups	55
8	Changes in daily food intake throughout the study period in the four studied groups	60
9	Changes in mean food intake (g/day) in the four studied groups	63
10	Changes in gastric emptying (%) in the four studied groups	66
11	Changes in frequency gastric contraction in the four studied groups (wave/sec.)	72
12	Changes in gastric motility index / sec. in the four studied groups	73
13	Recording of gastric motility in the four studied groups	74

List of Abbreviations

ANOVA Analysis of variance

ATP Adenosine triphosphate

BW Body weight

CART Cocaine-amphetamine-regulated transcript

CCK Cholecystokinin

CSF Cerebrospinal fluid

FBW Final body weight

FD Functional dyspepsia

GIP Gastric inhibitory polypeptide

GLP-1 Glucagon-like peptide-1

IBW Initial body weight

ICC Interstitial cells of Cajal

IGP Intragastric pressure

IL Interleukin

L-NAME N omega-nitro-L-arginine methyl ester

LSD Least significant difference

NAD Nicotinamide adenine dinucleotide

NANC Non-adrenergic, Non-cholinergic

nNOS Neuronal nitric oxide synthase

NO Nitric oxide

NOS Nitric oxide synthase

NPY Neuropeptide Y

NRC National research council

PYY Peptide YY

SEM Standard error of the mean

SIR2 Silent information regulator 2

SPSS Statistical Program for Social Science

TNF Tumor necrosis factor

VIP Vasoactive intestinal peptide

Introduction

As the world's population continues to live longer, studies in physiological changes in aging become increasingly essential for living a longer healthier life. **Aging** is a natural, complex, and multifactorial biologic process characterized by deterioration of homeostatic mechanisms that reduces the capability of the individual to adapt to internal and external environmental changes.

Studies in previous literature suggested that aging is associated with disordered gastrointestinal transit, slowing of solid and/or liquid gastric emptying. The slowing of gastric emptying was reported to be implicated in some aging- associated health problems like anorexia of aging (Morley, 2001) resulting from early satiation (Clarkston et al., 1997). Anorexia of aging might be implicated in the development progression of chronic diseases and affecting commonly the elderly like impaired muscle function. decreased bone immune dysfunction, mass. anemia, reduced cognitive function, poor wound healing, delayed recovery from surgery, and ultimately increased morbidity mortality. (Chapman, and *2007*).

Rate of gastric emptying is a rate limiting step in the absorption of orally –administered drugs (Gidal et al., 2006) and is also a major determinant of the glycemic and cardiovascular response to oral carbohydrate (Ishii et al., 1997 and Jones et al., 1998). Glycemic response to oral carbohydrate is important for the dietary management of people with diabetes mellitus and to reduce both the development and progression of microvascular complications (American Diabetes Association, (2001). Cardiovascular response to oral carbohydrate might be relevant to postprandial hypotension, which is an important clinical problem in the elderly (Jansen and Lipsitz,1995).

Delayed gastric emptying and disturbed gastric motility are deeply involved in Impaired tolerance to gastric feeding in criticall ill patients in intensive care units (Heyland et al., 2003) leading to patient discomfort, increased risk of pulmonary aspiration with the need for post-pyloric feeding, or parenteral nutrition (Mentec et al., 2001 and Multu et al., 2001) which would adversely affect patient morbidity and mortality (Ritz et al., 2000).

Nitric oxide (NO) is a widespread signaling molecule that participates in virtually every cellular and organ function in the body (Moncada and Higgs, 2006). Nitric oxide (NO) is an neurotransmitter of peripheral inhibitory nonadrenergic noncholinergic (NANC) nerves in the gastrointestinal tract that is involved in the reflex relaxation of the gastric fundus to accommodate food or fluid (Desai et al., 1991) and mediate relaxation of the pylorus and upper duodenum, thereby facilitating gastric emptying (Orihata and Sarna, 1994). Reports on NO changes with aging were conflicting with some authors reporting decreased neuronal nitric oxide synthase (nNOS) expression in myenteric plexus with aging (Takahashi et al., 2000) and others reporting enhancement of neuronal NO synthase, a lowering of endothelial, and no alteration in inducible activity of nitric oxide synthase (Domek-Łopacińska and Strosznajder, 2010) with aging.

Thus, it was intriguing to design a study to investigate changes in gastric emptying and motility with aging and the contribution of NO to these changes.

Aim of the work

The present study was planned to investigate the changes in gastric emptying and motility in aged rats and their contribution to changes in food intake as well as the effect of stimulation or inhibition of NO synthesis on these parameters.