Role of Cystatin C and Renal Resistive Index in Assessment of Renal Function in Patients with Liver Cirrhosis

Thesis

Thesis Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By

Mohammed Anwar Abd Elaziz Rashd

M.B.B.Ch

Faculty of Medicine - University of Alexandria

Supervised by

Prof. Dr. Ahmed Ali Moines Yassen

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Prof. Dr. Engy Yousry El Sayed Ashour

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Dr. Ahmed Samir Abo Halima

Assistant Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة البقرة الآية: ٣٢

- All praise are to Allah and all thanks. He has guided and enabled me by his mercy to fulfill this essay, which I hope to be beneficial for people.
- I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Ahmed Ali Moines Yassen**, Professor of Internal Medicine, Faculty of Medicine, Ain Shams University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.
- am also grateful to **Prof. Dr. Engy Yousry El**Sayed Ashour, Professor of Internal Medicine, Faculty
 of Medicine, Ain Shams University, who freely gave her
 time, effort and experience along with continuous guidance
 throughout this work.
- A lot of thanks are extended to Dr. Ahmed Samir Abo Halima, Assistant Professor of Internal Medicine, Faculty of Medicine, Ain Shams University for his effort, constant encouragement and advice whenever needed.
 - Finally, I would like to express my endless thanks to My dear small family, My lovely Wife and for her endless support, And never to forget the great efforts of my parents to reach this moment, God blesses you all.

🖎 Mohammed Anwar Abd Elaziz

Contents

Subjects	Page
List of Abbreviations	
List of Tables	III
List of Figures	IV
Introduction	1
Aim of Work	4
Review of literature	
- Chapter I: Renal Dysfunction in liver Cirrho	osis5
- Chapter II: Role of Cystatin C in assessmen	t of renal
impairment	20
- Chapter III: Renal Resistive Index	29
Patients and Methods	38
Results	45
Discussion	55
Summary	62
Recommendation	66
References	67
Arabic Summary	

List of Abbreviations

ACEIs : Angiotensin-converting-enzyme inhibitors

AKI : Acute kidney injury

ALT : Alanine transaminase

AST : Aspartate transaminases

ATN : Acute tubular necrosis

C.B.C : Complete blood count

CKD : Chronic kidney disease

CKD-EPI: Chronic kidney disease epidemiology

CPT : Child pugh turcotte

CysC : Serum cystatin C

DN: Diabetic nephropathy

DUS : Doppler ultrasound

eGFR_{cys} : Estimated glomerular filtration rate _{cys}

ESRD: End-stage renal disease

FBS: Fasting blood sugar

GFR : Glomerular filtration rate

HRS: Hepatorenal syndrome

KIM-1 : Kidney injury molecule-1

L-FABP: Liver type fatty acid-binding protein

LVP : Large volume paracentesis

MAP : Mean arterial pressure

MARS : Molecular adsorbent recirculating system

Tist of Aberrations &

MDRD: Modification of diet in renal disease

NASH: Non-alcoholic steatohepatitis

NGAL : Neutrophil gelatinase-associated lipocalin

NSAIDs : Non steroid anti-inflammatory drugs

OLT : Orthotopic liver transplantation

RRI : Renal resistive index

SBP : Spontaneous bacterial peritonitis

TIPS: Transjugular intrahepatic portosystemic shunt

List of Tables

Table	Title	Page
1	Comparison between the four studied	45
	groups according to sex	43
2	Comparison between the four studied	46
	groups according to age	10
3	Comparison between the four studied	47
	groups according to kidney function	7/
4	Comparison between the four studied	48
	groups according to GFR Cr	70
5	Comparison between the four studied	50
	groups according to Cystatin c and GFR _{Cys}	
6	The stages of CKD of cirrhotic patients	50
	according to GFR _{Cr}	
7	The stages of CKD of cirrhotic patients	50
	according to GFR _{Cys}	50
8	Correlation between GFR _{Cr} and GFR _{Cys}	51
9	Correlation between Cystatin c and RRI	51
10	Comparison between the four studied	52
	groups according to RRI	32
11	Diagnostic validity of cystatin c as	53
	predictor of renal impairment	55
12	Diagnostic validity of RRI as predictor of	54
	renal impairment	57

List of Figures

Figure	Title	Page
1	Cystatin C (molecular formula, C22H40N8O5;	20
	charge, 0).	
2	Factors which mainly affect peak systolic velocity	31
	and end diastolic velocity in parenchymal renal	
	arteries are here described	
3	ROC curve for Cystatin c for prediction of renal	53
	impairment	
4	ROC curve for RRI for prediction of renal	54
	impairment	

Introduction

Cirrhosis of the liver is often accompanied by functional renal failure particularly in advanced stages of liver disease. Hemodynamic alterations with reduced effective arterial blood volume and peripheral vasodilation are followed by activation of vasoconstrictive hormones (renin-aldosterone, vasopressin, and endothelin) and neurohumoral systems (including increased activity of nervous system) (*Salerno et al.*, 2007).

The most common functional renal abnormalities in patients with cirrhosis are an impaired ability to excrete sodium and water and a reduction of renal blood flow and glomerular filtration rate, the latter two being secondary to vasoconstriction of the renal circulation (*Arroyo et al.*, 2008).

Hence renal failure is directly linked to the mortality rate of cirrhotic patients, it is of a great clinical importance to monitor renal function closely in order to estimate the prognosis and determine the optimal therapeutic option (*Kim et al.*, 2011).

The intra-renal resistive index (RI) is the most frequently used parameter to assess intra-renal resistance and is calculated based on intra-renal duplex ultrasound measurements. Renal arterial RI was reported to be higher in cirrhotic patients than in healthy controls and also it is higher in cirrhotic patients with ascites than in cirrhotic patients with-out ascites (Zeller et al., 2008).

The resistive index (RI) measures the degree of intrarenal arterial impedance and is calculated using the following formula: ([peak systolic velocity – end-diastolic velocity]/ peak systolic velocity) (*Krumme et al.*, 2006).

Serum cystatin C could be proposed as a marker of liver disease stage and a more sensitive indicator of renal function in patients with cirrhosis than serum Cr level (*Chung et al.*, 2010).

Serum cystatin C level was useful marker for predicting the prognosis of cirrhotic patients (Seo et al., 2009)

CysC is a non-glycosylated 13 kDa protein, produced at a constant rate by all nucleated cells, freely filtered by the glomeruli and subsequently metabolized in the proximal tubules (*Chew et al.*, 2008).

Opposed to creatinine, CysC is independent of gender, age, and muscle mass and not influenced by serum bilirubin, inflammation, or malignancy (*Zahran et al.*, 2007).

Aim of the work

The aim of the present work is to evaluate the Role of cystatin C and renal resistive index in assessment of renal function in patients with liver cirrhosis

Renal Dysfunction in liver Cirrhosis

Introduction

Renal impairment is considered as public complication of liver cirrhosis. This may be linked to the odd hemodynamics of systemic and splanchnic arterial vasodilatation and extra-hepatic vasoconstriction distinct to advanced cirrhosis (*Wong et al.*, 2012).

Renal impairment may present either acutely, or may be as a result of pre-existing chronic kidney disease (CKD). In any condition, it is associated with amplified mortality and morbidity (*Mindikoglu et al., 2013*).

Etiology of renal Failure in liver cirrhosis

The most common causes of kidney injury in liver cirrhotic patients: (*Carvalho GC et al.*, 2012)

- (1) Sepsis which may complicated with circulatory dysfunction
- (2) Pre-renal cause like Hypovolemia secondary to gastrointestinal bleeding, large volume paracentesis or excessive diuretic use.
- (3) Drug-induced or contrast induced nephropathy.

- (4) Chronic kidney diseases.
- (5) Hepatorenal syndrome.

Chronic kidney diseases like IgA nephropathy, glomerulonephritis or nephrosclerosis are frequently seen in cirrhotic patients. In most cases, the original reasons of both conditions are alcoholic liver disease, hepatitis B and C and non-alcoholic steatohepatitis with associated diabetes and/or hypertension (*Hartleb et al.*, 2012).

Hepatorenal syndrome (HRS) is a functional form of renal failure overstated especially in end stage of liver cirrhotic patients particularly with ascites. It can be reversed either with orthotopic liver transplantation (OLT) or with pharmacological treatment with splanchnic vasoconstrictors and albumin (Angeli et al., 2015).

HRS is the eventual result of arterial underfilling due to splanchnic and systemic vasodilation commonly with high cardiac output. When the circulatory dysfunction is insufficient to restore hemodynamics, vasoconstrictor mediators are released, resulting in severe renal vasoconstriction (*Angeli et al.*, 2015).

Pathophysiology of Hepatorenal syndrome

The main cause of HRS is thought to be due to extreme circulatory dysfunction. Several local acting vasodilators factors such as cannabinoids and nitric oxide are created from Hepatocytes and stellate cells in a cirrhotic liver. These vasodilators act locally on the splanchnic circulation which represents an essential part of the circulation of the body leading to splanchnic arterial vasodilation. Thus, splanchnic vasodilation cause a reduction in mean arterial pressure (MAP), which prompts the activation of the sympathetic nervous system, which in turn leading to release of noradrenaline in high levels into circulation, which lead to increase in cardiac output as an early circulatory compensating mechanisms that keep MAP constant (*Iwakiri et al.*, 2014).

The worse splanchnic vasodilation becomes, the more vasoconstrictor systems get activated and released in circulation as vasopressin and the renin-angiotensin-aldosterone system (*Iwakiri et al.*, 2014).

Aldosterone prompts sodium and water retention by the kidneys leading to progress of ascites. Vasopressin augments free water retention leading to hyponatremia. The splanchnic vascular bed is insensitive to the action of all