Outcome and Feasibility of Angioplasty In Management Of Failing and Failed Hemodialysis ArterioVenous Fistula

Thesis

Submitted for Partial Fulfillment of for partial fulfillment of M.D. **In vascular surgery**

By *Mohamed Sabry Abd EL Aziz*

M.SC. of general surgery and M.B.B.Ch.

Cairo University

Under supervision of DR:Mahamed Ibrahim Sharkawy

Professor of General and Vascular Surgery,

Faculty of Medicine Cairo University.

Dr Hisham Mostafa Abd Elsamad

PROFESSOR OF GENERAL AND VASCULAR SURGERY
FACULTY OF MEDICINE CAIRO UNIVERSITY

Dr:Ahmed Samir Hosny.

ASSISTANT PROFESSOR OF GENERAL AND VASCULAR SURGERY,
FACULTY OF MEDICINE CAIRO UNIVERSITY.

Dr Maher Abd Almoneim Mahdy

LECTURER OF GENERAL AND VASCULAR SURGERY
FACULTY OF MEDICINE CAIRO UNIVERSITY

FACULTY OF MEDICINE CAIRO UNIVERSITY 2016

بسم الله الرحمن الرحيم

﴿ وَمَا بِكُمْ مِنْ نِعْمَةٌ فَمِنَ اللَّهِ ثُمَّ إِذًا مَسَّكُمُ

الضُّرُ فَإِلَيْهِ تَجْأَرُونَ﴾

صدق الله العظيم

سورة النحل:

الاية٥

ACKNOWLEDGEMENT

First of all, thanks to Allah for helping and guiding me in accomplishing this work and for everything else I have.

Words are not sufficient to express my sincere appreciation and my deepest gratitude to **DR. Mahamed Sharkawy**, Professor of General and Vascular Surgery, Faculty of Medicine, Cairo University, for his continuous encouragement and for giving me the privilege to work under his supervision.

I would like also to express my sincere appreciation to Dr. *Hassan Soliman* Professor of General and Vascular surgery, Faculty of Medicine, Cairo University, for his fatherly support and encouragement.

I would like to thank **DR. Hisham Mostafa**, Professor of General and Vascular Surgery, Faculty of Medicine, Cairo University, for his guidance and suggestions which were of great value to me, for his valuable comments, careful supervision, constructive guidance and meticulous revision of this work and I am also grateful to his unique effort, considerable help.

I would like to thank **DR Ahmed Samir**., Assistant Professor of General and Vascular Surgery, Faculty of Medicine, Cairo University, for his guidance and suggestions.

Also I would like to thank **Dr. Maher Abd Almoneim Mahdy**, Lecturer of General and Vascular surgery, Faculty of Medicine, Cairo University, for his great support and guidance.

Mohamed Sabry

List of content

Title	Page
Abstract	1
Chapter 1:Basics of hemodialysis access	2
placement	
Chapter 2: From pathogensis to pathology to	13
novel thrapies	
Chapter 3: Overall care of hemodialysis	25
patient	
Chapter4:Monitoring and surveillance of	31
vascular access	
Chapter 5: Management of failing or failed	41
hemodialysis access	
Chapter 6:endovascular management of	56
dysfunctional arterio-venous fistula	
Patients and methods	70
Results	83
Discussion	91
Summery and conclusion	99
References	101

١

List of figures

No.	Title	Page
Figure (1)	Radio-cephalic fistula the skin incision (the dotted line) is made to facilitate using the dorsal branch of the cephalic vein in the anastomosis.	6
Figure (2)	Brachio-Cephalic Arterio-Venous fistula .	7
Figure (3)	Hemodialysis safety checklist.	
Figure(4)	Mechanism of AVF failure.	
Figure(5)	Vascular remodeling and Neointimal hyperplasia.	
Figure(6)I	(A). Arterialized media (B) Downstream vein . (C) M, media; N, neointima.	20
Figure(6)II	(D) Thickness of normal venous (E) The thickness of the venous neointima (N,double- headed arrow) and media (M,bar) in a dialysis patient with venous stenosis. (F) Downstream vein (neointima) (von Willebrand factor (vWf).	21
Figure(6)III:	(G) Downstream vein (neointima) . (H) Downstream vein (neointima). High-power view of a portion of the neointima stained for smooth muscle cells (brown) and proliferating cells (blue). (I) Upstream graft (neointima) . High-power view of a macrophage giant cell adjacent to the neointimal surface of the PTFE graft	21
Figure(6) IV	(J) PTFE graft (adventitia) . Note the strong expression of bFGF in adventitial vessels (thick arrow) and by the macrophage giant cell layer (thin arrow) lining the graft. (K) Downstream vein (media and neointima). There is strong	22

П

LIST OF FIGURES

No.	Title	Page
	expression of this cytokine in the venous media (L) PTFE graft. There is strong expression of tenascin in the region of the macrophage giant cell layer (thin arrow) surrounding PTFE graft	
Figure(7)	Representative images of brachial velocity spectra waveforms and velocity spectra criteria used to define the three volume flow (VF) categories: low, <600 mL/min; acceptable, 600 to 800 mL/min; and high, >800 mL/min.	37
Figure(8)	CDUS revealed patent AVF with totally occluded incompressible thrombosed cephalic vein at the arm.	39
Figure(9)	Normal spectral Doppler image of the graft-venous end demonstrates monophasic, low resistance arterial waveform	39
Figure(10)	Sites of venous stenosis in PTFE dialysis grafts. (A) Sites of venous stenosis in PTFE dialysis grafts. lesions at the graft–vein (B) Angiogram of a PTFE dialysis graft with a developing pseudoaneurysm (arrowhead) and stenosis (arrow) graft–vein anastomosis. Quoted from	45
Figure(11)	Amplatz Thrombectomy device.	48
Figure(12)	Trellis catheter	49
Figure(13)	Open, surgical options for failing brachio-cephalic prosthetic access	51
Figure(14):	Sites of venous stenoses for native arteriovenous fistulae (A) at the wrist and (B) at the elbow. (FromTurmel-Rodrigues L, Pengloan J, Baudin S, et al. Treatment of stenosis and thrombosis in haemodialysis fistulas and grafts by interventional radiology.	53

LIST OF FIGURES

No.	Title	
Figure (15)	Arm elevation test. (A) Fullness (arrow) near the anastomosis resulting from a small Aneurysm. The fullness collapses completely on arm elevation (B, arrow) suggesting an Absence of significant outflow obstruction.	72
Figure (16)	Schematic representation of the main types of stenotic lesions complicating accesses	75
Figure (17)	Angiosuit	76
Figure (18)	standard sheath.	77
Figure (19)	Bern catheter	
figure (20a)	Needling segment stenosis.	
Figure(20b)	Juxtaanastmotic venous stenosis.	
Figure 21c	Central venous stenosis	
Figure(22)	Total occlusion with nipple	
Figure(23)	flush occlusion.	
figure(24)	Open transradial access	
figure(25)	Transfistula access	87
Figure(26)	Combined thrombectomy(a) and angioplasty(b)	87
Figure(27)	peripheral stenting in brachiocephalic AVF	
Figure(28)	Central stent.	89
Figure (29)	Primary and Secondary patency survival curves.	90

LIST OF FIGURES

No.	Title	Page
figure(25)	transfistula access	87
Figure(26)	combined thrombectomy(a) and angioplasty(b)	87
Figure(27)	peripheral stenting in brachiocephalic AVF	88
Figure(28)	Central stent.	89
Figure (29)	primary and secondary patencies	90

List of tables

No.	Title	Page
1	Advantage and disadvantage of different dialysis methods	1
2	The order of preference for AV access placement.	9
3	Fistula types in the study.	83
4	Distribution of lesion (stenosis)among study population	85
5	Distribution of lesion (occlusion)among study population	88
6	Relation between site and type of lesions that needed balloon dilatation only.	89

List of abbreviations

AA : Axillo-axillary

AAVS : the American Association for Vascular surgery

ADMA : Asymmetrical Dimethyl Arginine

AJ : Axillary-Internal jugular

AVF : Arterio Venous fistula

BAM: Balloon Assisted Maturation

BBT: Brachical-Basilic transposition

bFGF : basic fibroblast growth factor

BJ: brachial-jugular

CDUS: Color Doppler Ultra Sonograghy

CE-MRA : Contrast-enhanced magnetic resonance angiography

DM : diabetes mellitus

DOQI : Dialysis Outcome Quality Initiative guidelines

DRIL: Distal revascularization with interval ligation procedure

DSA: Digital Subtraction Angiography

DVP : dynamic venous pressure

EMDA: Endovascular Management of the thrombosed or

Dysfunctional hemodialysis Access

EPC: Endothelial Progenitor Cells

ESRD : end stage renal disease

FA-L: forearm loop

FA-S : forearm straight

FIT : Far infrared therapy

IMN : ischemic monomelic neuropathy

ISS : ischemic steal syndrome

MCP1 : Monocyte chemotactic protein

MMP : Matrix Metalloprotinases

MSCTA: Multi-Slice Computed Tomographic Angiography

NKF : National Kidney Foundation

PDGF : platelet-derived growth factor

PSV: peak systolic velocity

PTA: percutaneous transluminal angioplasty

PTFE: polytetrafluoethylene

QBA : The blood flow rate of the brachial

RCDA: radial- cephalic direct AV access

SBDA : snuffbox radial-cephalic direct AV access

SCVIR : The society of cardiovascular and interventional radiology.

SMAT: shape memory alloy recoverable technology

TGFβ : Transforming growth factor beta

UA : upper arm

VF : Volume flow

vWf: von Willebrand factor

Abstract

Autologous A-V fistulae are the recommended access for long term dialysis in chronic renal failure patients. However, the rate of failure still significant. The present study aimed at salvaging fistulas using Percutaneous Transluminal balloon Angioplasty (PTA).

Patients and Methods:

One hundred patients were presented with failing or failed fistulas were included, to which they were subjected to PTA to assess the success rate in restoring the fistulae's patency and function.

Results:

The salvage rate reach 93% in which the fistulas regain their usability for hemodialysis, primary patency rates after angioplasty at 3,6,912,18 and 24months were 96.7%,90.3%,80.6%,77.4%,65.5% and 51.6% respectively.

Conclusion:

Confirming endovascular approach is a feasible modality to salvage failed or failing AVF with good outcome as regarding primary and secondary patency.

Keywords:

Access dysfunction, PTA.

CHAPTER 1

Basics of Hemodialysis Access Placement

Methods of vascular access for chronic hemodialysis:

Patients with End Stage Renal Disease (ESRD) need regular clearance of the blood from the metabolic waste products as excess acids, potassium, water and nitrogenous compounds. To achieve that, the blood should be passed through a successive chemical and mechanical filters and then back to the patient in a closed circuit. All of that need a good, sufficient blood flow which is not provided by the superficial veins. Thus the idea of transferring the highly pressured arterial flow to the superficial veins through an arteriovenous communication has been emerged (*Tzanakis et al,2002*).

Vascular access for hemodialysis can be obtained mainly by three ways: 1) placement of temporary or permanent double lumen central venous catheter, 2) creation of an autogenous arteriovenous (AV) access, or 3) Placement of synthetic AV bridge graft .Each way has advantages and disadvantages as shown in table 1.

Table 1:demonstrate the advantages and disadvantages of different dialysis ways:

Method	Advantages	Disadvantages
Dialysis catheters	 Easily inserted and removed Immediately available for use Hemodynamic effects of AV shunt don't occur Placement possible in nearly all patients 	 Highest risk for infection Incites central venous thrombosis and stenosis that may preclude use of extremities for AV access creation Inconsistently provides blood flow rates adequate for optimum dialysis.

Method Advantages		Disadvantages
Autogenous AV access	 Fewer secondary procedures required to maintain equivalent patency Resistant to infection 	 More difficult to cannulate Early failure rates higher compared to bridge grafts Required prolonged maturation period Hemodynamic effects may occur Anatomy may preclude procedure in some patients

Site and type selection for AV access:

Proper selection of the site and type of the AV access depends on many facts:

- 1. The hemodialysis central venous catheter should never be a substitute to the autogenous AV access but may be used as a bridge until maturation of the access.
- 2. The autogenous AV access is preferred over the synthetic grafts as it carries a less incidence of infection and has better long-term patency rates and requires fewer interventions to maintain patency than nonautogenous AV access.
- 3. The upper extremity is preferred over the lower extremity for the placement of AV access as the blood flow is better (arterial and venous) and the infectious complications are less frequent.
- 4. The major determent of autogenous AV access success and reaching maturation is the diameter of the artery and vein; quality of the arterial inflow and venous outflow, and the presence of a peripheral vein segment of suitable length and accessibility for future hemodialysis. The venous outflow is assessed by clinical and radiological evaluation of the size and quality of the superficial