

ELECTROMAGNETIC WAVE-PARTICLE INTERACTION USING CAVITY MODAL EXPANSION

By

Ahmed Farghaly Abdelrahman Abdelshafy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

ELECTROMAGNETIC WAVE-PARTICLE INTERACTION USING CAVITY MODAL EXPANSION

By

Ahmed Farghaly Abdelrahman Abdelshafy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Associate Prof. Tamer Mostafa Abuelfadl

Advisor

Electronics and Communications Engineering Faculty of Engineering, Cairo University

ELECTROMAGNETIC WAVE-PARTICLE INTERACTION USING CAVITY MODAL EXPANSION

By

Ahmed Farghaly Abdelrahman Abdelshafy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Associate Prof. Tamer Mostafa Abuelfadl, Thesis Main Advisor

Associate Prof. Islam Abdelsattar Eshrah, Internal Examiner

Prof. Ahmed Mohamed Attiya, External Examiner

(Head of Microwave Engineering Dept., Electronics Research Institute)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Ahmed Farghaly Abdelrahman

Abdelshafy

Date of Birth: 20/3/1991 **Nationality:** Egyptian

E-mail: a.f.abdelrahman@gmail.com

Phone: (+2)01206477976

Address: Electronics and Communications

Engineering Department,

Cairo University, Giza 12613, Egypt

Registration Date: 01/10/2012 **Awarding Date:** / /2016

Degree: Master of Science

Department: Electronics and Communications

Engineering

Supervisors:

Associate Prof. Tamer M. Abuelfadl

Examiners:

Associate Prof. Tamer M. Abuelfadl (Thesis main advisor)
Associate Prof. Islam A. Eshrah (Internal examiner)
Prof. Ahmed Mohamed Attiya (External examiner)

Title of Thesis:

ELECTROMAGNETIC WAVE-PARTICLE INTERACTION USING CAVITY MODAL EXPANSION

Key Words:

Wave-Particle Interaction; Cavity Modal Expansion(CME); Particle in Mode(PIM); Cherenkov radiation

Summary:

A new technique to simulate the interaction between the electromagnetic fields and charged particles. This technique is based on Cavity Modal Expansion whereby the known solenoidal and irrotational eigenmodes of a canonical cavity are employed to solve different electromagnetic problems. In this study, the technique is employed to solve a cold electromagnetic problem like circular waveguide excited by an axial current probe to obtain the transient solution in order to validate time domain model. Also, it is employed to solve a hot electromagnetic problem, where the interaction between the fields and particles occurs, as Cherenkov radiation to obtain the dynamic behavior of the particle as well as the electromagnetic fields radiation.

Acknowledgments

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions. I am heartily thankful to my adviser Dr. Tamer Abuelfadl who was helpful and offered invaluable assistance, support and guidance. I learned a lot from his vision and dedication. I could not imagine having a better advisor.

My deepest gratitude to my parents and siblings. Without their encouragement and venture guidance, I would not have gone this far.

Finally, Many thanks to my friends Mostafa Zaki, Mohammed Elmotaz, Mohammed Wagih, and Ahmed Alsawi for their support and help through the duration of this work.

Ahmed.

Dedication

This thesis dedicated to my family and friends.

Table of Contents

A	скпо	wieagi	nents	I
D	edica	tion		iii
Ta	able (of Con	tents	V
L	ist of	Table	s	vii
L	ist of	Figur	es	ix
L	ist of	Symb	ols and Abbreviations	xii
L	ist of	Public	cations	xvii
A	bstra	ict		xix
1	Lite	eratur	e Review	1
	1.1	Introd	luction	1
	1.2	Electi	romagnetic Field Expansion	2
	1.3	Partic	le Wave Interaction	3
		1.3.1	The Finite Difference Time Domain Method	4
			1.3.1.1 The FDTD Algorithm: Maxwell's equations in one dimension	5
		1.3.2	Particle in Cell and Cloud in Cell	7
			1.3.2.1 The PIC Algorithm: Electrostatic Case in one Dimension	9
2	Ca	vity M	odal Expansion Technique	15
	2.1	Proble	em Formulation	15
	2.2	Canon	nical Cavity Modes	16
		2.2.1	Solenoidal Eigenmodes	16
		2.2.2	Irrotational Electric Field Eigenmodes	17
		2.2.3	Irrotational Magnetic Field Eigenmodes	18
		2.2.4	Orthogonality of Eigenfunctions	19

		2.2.5 Fields Expansion	19
		2.2.6 Expansion of the Fields Differentiation	20
	2.3	Boundary Conditions	21
		2.3.1 Internal Surface Boundary Conditions	21
		2.3.2 Port Surface Boundary Conditions and their Field Expansion	22
	2.4	Different Forms of the Problem	23
3	CM	IE for Waveguide Excitation Problems	25
	3.1	Problem Formulation	26
	3.2	Cylindrical Cavity Eigenmodes	26
		3.2.1 Solenoidal Modes	26
		3.2.2 Irrotational Modes	29
	3.3	Maxwell's Equations and Waveguide Port Boundaries	30
		3.3.1 Maxwell's Equations	30
		3.3.2 Waveguide Port Boundaries	31
	3.4	Results	33
		3.4.1 Case I: Cosine wave excitation signal	33
		3.4.2 Case II: Gaussian-sine wave excitation signal	35
4	Par	ticle-In-Mode Technique and its Application to Hot Problems	37
	4.1	Problem Formulation	39
	4.2	Equations of Motion	39
	4.3	Normalized equations	41
	4.4	Results	43
		4.4.1 Case I	43
		4.4.2 Case II	46
		4.4.3 Case III	48
5	Con	nclusion and Future Work	53
Re	efere	ences	55
Aı	rabic	e Abstract	١

List of Tables

4.1	Case I: Comparison in computational efforts between PIM and PIC Tech-	
	niques	44
4.2	Case II: Comparison in computational efforts between PIM and PIC Tech-	
	niques	47
4.3	Case III: Comparison in computational efforts between PIM and PIC Tech-	
	niques	49