

SYNTHESIS, CHARACTRIZATION AND APPLICATION OF NOVEL METALLONANOCOMPOSITE SYSTEMS IN VARIOUS PROCESSES OF ENVIRONMENTAL AND INDUSTERIAL IMPACT

A Thesis Submitted By

Safaa Rushdy Atia Fodua

B.Sc. and M.Sc.

For the Award of Ph.D. degree in Chemistry Under supervision of

Prof. Salah A. Hassan

Professor of Physical Chemistry, Faculty of Science, Ain-Shams University.

Dr. Nour El-Din Ahmed Abd-El Star

Lecture of Organic Chemistry Faculty of Science, Ain-Shams University. Dr. Atef Samir Darwish

Lecturer of Physical Chemistry Faculty of Science, Ain-Shams University.

Chemistry Department, Faculty of Science, Ain-Shams University

2016

بِيْدِ مِرَاللَّهِ ٱلرَّحْمَزِ ٱلرَّحِيهِ مِر

(قالوا سبحانك لا علم لنا الا ما علمتنا انك انت العليم العلم العلم العلم العلم العلى العلم ا

(البقرة: الآية٣٢)

SYNTHESIS, CHARACTRIZATION AND APPLICATION OF NOVEL METALLONANOCOMPOSITE SYSTEMS IN VARIOUS PROCESSES OF ENVIRONMENTAL AND INDUSTERIAL IMPACT

Thesis submitted to: Faculty of Science, Ain-Shams University

For the award of: Ph.D. degree in Chemistry

By Safaa Rushdy Atia Fouda Thesis Supervisors: Approved

Prof. Salah A. Hassan
Professor of Physical Chemistry,
Faculty of Science, Ain-Shams University.
Dr. Atef Samir Darwish
Lecturer of Physical Chemistry
Faculty of Science, Ain-Shams University.
Dr. Nour El-Din Ahmed Abd-El Star
Lecture of Organic Chemistry
Faculty of Science, Ain-Shams University.

Head of Chemistry Department

Prof. Dr.

Ain-Shams University
Faculty of Science
Chemistry Department

Qualifications

Student name: Safaa Rushdy Atia Fouda

Bachelor degree: 2003

Master degree: 2011

Name of Faculty: Faculty of Science

University: Tanta University

Head of Chemistry Department Faculty of Science Ain-Shams University

Prof. Dr.

To my Father, mother, the dearest children of mysister
(Mohmmed, Basant and Malk), sister(Marwa) and my brother
(Moustafa)

Acknowledgement

In the name of Allah, Most Gracious, Most Merciful

It is my duty, as a start to praise Almighty Allah, lord of the world, whose guidance, blessings and help enabled me to take my first step on the path of improving my knowledge through this humble effort.

I would like to express my deepest respect and most sincere gratitude to my supervisor, *Prof. Salah A. Hassan*, Professor of Physical Chemistry, Faculty of Science, Ain-Shams University, who initiated and assigned this study. His valuable advice, help, guidance, encouragement at all stages of my work, stimulating discussion and also reviewing critically the manuscript. His constructive criticism and comments from the initial conception to the end of this work are highly appreciated. I am greatly indebted to his assistance and understanding in matters of non-academic concern, which have helped me endure some difficult times during my study period.

I also wish to express my heartfelt thanks and appreciation to **Dr. Atef Samir Darwish**, lecturer of Physical Chemistry, Faculty of Science, Ain-Shams University, for his support, tolerance, fruitful and valuable advice, help, guidance, encouragement at all stages of my work, stimulating discussion and also reviewing critically the manuscript.

Also all thanks to *Dr. Nour El-Din Ahmed Abd-El Star*Lecture of Organic Chemistry, Faculty of Science, Ain-Shams University, who helped me more in this work, her advices were very useful in

solving all the problems that I faced specially through nanocomposites synthesis and discussion.

A very special appreciation is due to **my parents, my sister and my brother** not only for their constant encouragement but also for their patience and understanding throughout. May God bless them in all their endeavors because without their unreserved support, completion of this study would not have been possible.

Also, I would like to thank my lab friends, for their cooperation and assistance during the achievement of this work.

Finally, I thank **each person** who had helped me in accomplishing this work especially my colleagues.

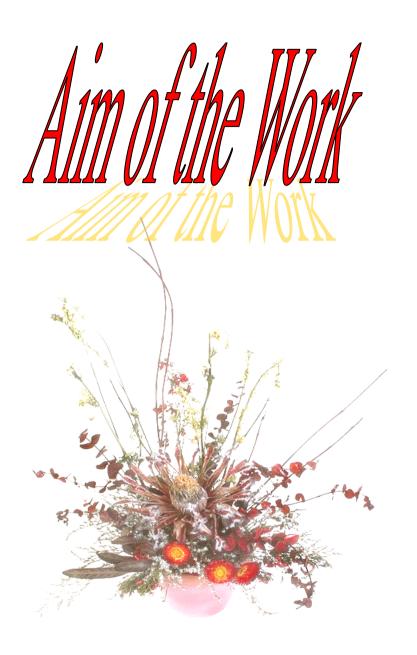
Candidate
Safaa Rushdy
2016

Abstract

Name: Safaa Rushdy Fouda

Thesis title: Synthesis, Characterization, and Application of Novel metallonanocomposite systems in various processes of Environmental and Industrial impact.

In the present work, magnetite nanoparticles (M NPs) were incorporated into poly (amido amine) (PAMAM, G=2) dendrimer matrix to form the mother composite M NPs (1*10-3 M)@PAMAM. Dendrimer-modified composites were synthesized through conjugation with rice straw ash (RSA) or montomorillonite (MMT). Hybrid composites were obtained by applying (1*10-3 M, 3*10-3 M and 6*10-3 M) M NPs, namely M NPs @PAMAM@RSA and M NPs @PAMAM@MMT. In addition polyaniline based-RSA composite was prepared, followed by application of M NPs to form M NPs @PANI@RSA hybrid nanocomposite with the same molar ratios.

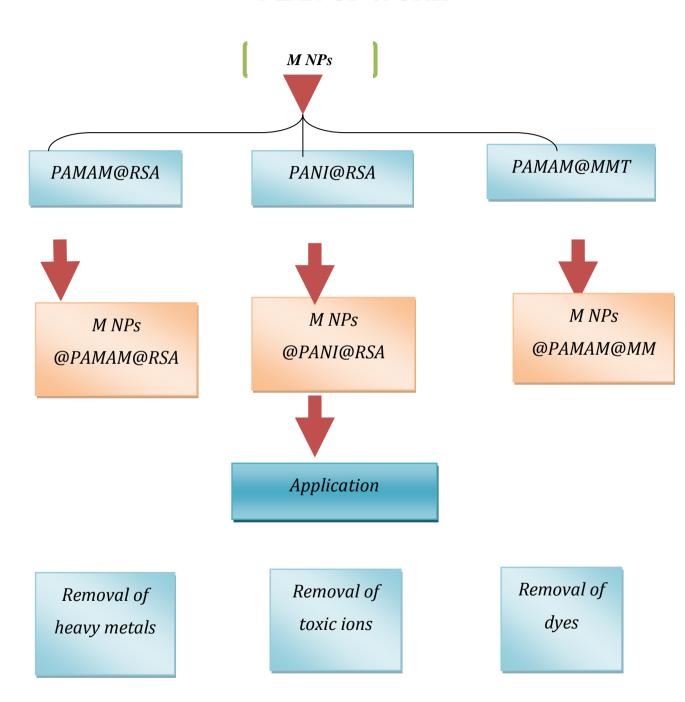

Structural characteristics of the various samples were investigated through XRD, FTIR techniques. Morphological textural characteristics were estimated from TEM, SEM and low-temperature adsorption-desorption isotherms of N_2 and pore size distribution analysis. The stability of colloidal system and conductivity were investigated by DLS and zeta potential.

Different linkages and interactions during the synthesis processes were investigated.

All the synthesized hybrid composites were applied in removal of hazardous dyes (e.g., XO, MG and ROS.HCl), ions (e.g., Br^- , NO^-_3 , and NH_4^+) and heavy metals (e.g., Hg).

Keywords:

Magnetite nanoparticles; PAMAM dendrimer; Polyaniline; Hybrid nanocomposites; Montomorillonite; Rice Straw Ash


THE AIM OF WORK

This work is aimed at manipulation of novel nanocomposites based on M NPs@PAMAM dendrimer and using them as efficient nancatalysts and adsorbents for removal of dyes and toxic ions from wastewater.

This study included the following items:-

- Synthesis of magnetite nanoparticles in the absence and in the presence of PAMAM dendrimer as mother nanocomposite for further modification.
- Synthesis of modified MMT by intercalation of PAMAM dendrimer into Na-MMT matrix with applying the magnetite nanoparticles in different ratios (1*10-3 M, 3*10-3 M and 6*10-3 M) M NPs @PAMAM@MMT.
- Synthesis of RSA-conjugated PAMAM dendrimer with applying magnetite nanoparticles of different concentrations M NPs @PAMAM@RSA.
- Synthesis of RSA-conjugated polyaniline with applying magnetite nanoparticles of different concentrations
 M NPs @PANI@RSA.
- Performing physicochemical characterization of different composites, by adopting XRD, FTIR, N₂-physisorption, TEM, SEM and DLS techniques.
- Study of the catalytic removal (adsorption) efficiencies of the assynthesized composites towards the dyes ,e.g., XO, MG, ROS-HCl dyes) and ions, e.g., Br^- , NO_3^- and NH_4^+ as well as heavy metals, e.g., Hg.
- Examination of adsorption kinetic models in all cases.

PLAN OF WORK

Abbreviations

Poly(amidoamine) dendrimer PAMAM

Sodium montmorillonite Na+-MMT

Cation exchange capacity CEC

Magnetite nanoparticles M NPs (Fe₃O₄)

Rice straw ash RSA

X-ray diffraction XRD

Fourier Transform infrared FTIR

Transmission electron microscope TEM

Scanning electron microscope SEM

Specific Surface area S_{BET}

BET-C energetic constant C_{BET}

 $Monolayer \ coverage \qquad \qquad V_m$

Pore size distribution P₃SD

Dynamic light scattering DLS

Zeta potential Z

Xylenol orange XO

Malachite green MG

Rosaniline-hydrochloride ROS-HCl

The initial concentration of dye in C_0

liquid phase

Dye concentration in liquid phase at Ce

equilibrium

The volume of the dye used V

The mass of adsorbent used M

Maximum wavelength of absorbance λ_{Max}

Contents

Subject		Page
I. Introdu	ction	
1.1	General statements	1
1.2	Metal-polymer nanocomposites	2
1.2.1	Examples of metal-polymer nanocomposites	6
1.3	Metal-polymer-clay nanocomposites	8
1.3.1	Structure of montmorillonite clay (MMT)	10
1.3.2	Interaction with organic compounds	11
1.3.2.1	Sorption of organic molecules	11
1.3.2.2	Ion exchange	12
1.3.3	Clay modification	13
1.3.3.1	Organoclay synthesis	14
1.3.4	Types of polymer-clay nanocomposites structure	15
	(a) Intercalated nanocomposites	16
	(b)Flocculated nanocomposites	16
	(c)Exfoliated nanocomposites	16
1.4	Methods of preparation of polymer-clay	17
	nanocomposites	
1.4.1	In situ polymerization	17
1.4.2	Solvent Method	18
1.4.3	Melt intercalation	18
1.4.4	Examples of polymer-clay nanocomposites	19
1.5	Dendrimers nanocomposites	22

1.5.1	Dendrimers synthesis	26
1.5.1.1	Divergent synthesis.	26
1.5.1.2	Convergent synthesis.	26
1.5.2	Unique dendrimer properties	27
1.5.2.1	Monodispersity	27
1.5.2.2.	Nanoscale container and scaffolding properties	27
1.5.2.3.	Amplification and functionalization of dendrimer	27
	surface groups	
1.5.2.4.	Nanoscale dimensions and shapes that mimic	27
	proteins	
1.5.2.5.	Physical characteristics of PAMAM dendrimers	27
1.6.	Metal-clay-PAMAM dendrimers nanocomposites.	31
1.6.1.	Dendrimers containing metal ions in structure	32
1.6.2.	Metal ions bound to ligands on the surface of	32
	dendrimers	
1.6.3.	Dendrimers containing nonstructural metal ions	33
	through their interior	
1.7.	Introduction to dendrimers containing zerovalent	34
	metal clusters	
1.7.1.	Dendrimers encapsulated metal nanoparticles	34
1.7.2	Catalysis using transition-metal nanoparticles	35
1.8	Intradendrimer complexes between PAMAM	36
	dendrimers and metal ions	
1.9	Synthesis and characterization of dendrimer-	37
	encapsulated metal nanoparticles	
1.9.1	Direct reduction of dendrimer/metal ion	37

	composites			
1.9.2	Displacement reaction method	38		
1.10	Application of dendrimers as catalysts	39		
1.11	Metal- rice straw ash and metal-silica	39		
	nanocomposites			
1.12	Metal-rice straw ash-polyaniline nanocomposite	41		
	and its applications			
1.12.1	Conducting polymers	41		
1.12.2	Polyaniline (PANI)	42		
	(a) Oxidation state forms of PANI	42		
	(b) PANI synthesis	43		
	(c)Application of polyaniline nanocomposite	47		
1.13	Application of various nanocomposites	49		
1.13.1	Removal of dyes.	49		
1.13.2	Removal of heavy metals	50		
1.13.3	Removal of anions and cations	51		
1.13.3.1	Removal of cations	51		
1.13.3.2	Removal of anions	55		
1.13.3.2.1	Removal of nitrate	55		
1.13.3.2.2	Removal of Bromide	56		
1.14	Aim of the work	58		
II: Experimental				
2.1	Materials and measurements	58		
2.1.1	Materials	58		
2.1.2	Measurements	58		
2.1.2.1	UV-VIS absorption spectra	58		