Ain Shams University Faculty of Medicine General Surgery Department

جامعة عين شمس كلية الطب قسم الجر احة العامة

ABDOMINAL COMPARTMENT SYNDROME

Essay Submitted By

Waleed Elkafrawy Elsaid Eldiadamony

M.B.B.Ch.

Faculty of medicine_Mansoura University

For the partial fulfillment of master degree in general surgery

Under supervision of

Prof. Dr. Awad Hassan Elkial

Professor of General Surgery Faculty of Medicine, Ain Shams University

Dr. Mohamed Ibrahim Hassan

Lecturer of General surgery
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2016

بِبْ مِالتَّمَالَيَّهُمَزِاليَّدِي مِ

﴿ وَالرَّاسِثُونَ فِي الْعِلْمِ يَهُولُونَ آمَنًا بِهِ كُلُّ

هِ وَالرَّاسِثُونَ فِي الْعِلْمِ يَهُولُونَ آمَنًا بِهِ كُلُّ

هِ وَالرَّاسِثُونَ فِي الْعِلْمِ الْأَلْبَابِ ﴾

هِنْ عِندِ رَبِّنَا وَمَا يَذَكُّرُ إِلَّا أُولُو الْأَلْبَابِ ﴾

حدي الله العظيم

(آل عمران ٧)

Acknowledgements

First, thanks are all directed to ALLAH for helping me to accomplish this research, and for providing me with such very encouraging and supportive supervisors.

I would like to express my deepest gratitude to **Prof. Dr. Awad Hassan Elkial,** Professor of General Surgery, Faculty of Medicine, Ain Shams University, for his great support and continuous encouragement throughout the whole work under his guidance and supervision.

My deepest appreciation and grateful thanks to Dr. Mohamed Ibrahim Hassan, Lecturer of General Surgery, Faculty of Medicine, Ain Shams University, for his kind advices and his great effort throughout this work.

Also, I cannot fully express my deep gratitude and thanks to my family, who I loved a lot and to whom I dedicate this work.

Waleed Elkafrawy

CONTENTS

•	List of AbbreviationII
•	List of figures IV
•	List of tablesVII
•	Introduction1
•	Aim of the work5
•	Epidemiology6
•	Anatomy9
•	Definition and classification25
•	Pathophysiology
•	Diagnosis43
•	Treatment modalities
•	Summary
•	References
•	Arabic summary1

LIST OF ABBREVIATIONS

Abbrev.	MEANING
ACS	Abdominal Compartment Syndrome
AIDS	Acute Intestinal Distress Syndrome
AP	Anteroposterior
APP	Abdominal Perfusion Pressure
BMI	Body Mass Index
CSF	Cerebrospinal Fluid
CT	Computed Tomographic
CVP	Central Venous Pressure
FIO2	Fractional Inspired Oxygen
GI	Gastrointestinal
IAH	Intra-Abdominal Hypertension
IAP	Intra-Abdominal Pressure
ICP	Intra-Cranial Pressure
ICU	Intensive Care Unit
INR	International Normalized Ratio
ITP	Intra-Thoracic Pressure
IV	Intra-Venous
IVC	Inferior Vena Cava
MAP	Mean Arterial Pressure
NMB	Neuromuscular blockade
NSAID	Nonsteroidal Anti-Inflammatory Drug

OA	Open Abdomen
PaO2	Arterial Oxygen Partial Pressure
PCD	Percutaneous Catheter Drainage
PCWP	Pulmonary Capillary Wedge Pressure
PEEP	Positive End Expiratory Pressure
PH	Power of Hydrogen
PT	Prothrombin Time
PTT	Partial Thromboplastin Time
SLAF	Subcutaneous Linea Alba Fasciotomy
STSG	Spilt-Thickness Skin Graft
VAC	Vacuum Assisted Closure
WSACS	World Society of the Abdominal Compartment Syndrome

List of figures

Figure No.	TITLE	Page No.
Figure 1	Abdominopelvic Regions + Quadrants.	10
Figure 2	Peritoneal Cavity.	16
Figure 3	Transverse section through the anterior abdominal wall above the arcuate line.	17
Figure 4	Transverse section through the anterior abdominal wall below the arcuate line.	19
Figure 5	Distinctions between normal intra- abdominal pressure, IAH and ACS. Shaded area illustrating IAH may undergo shifts to the right or left depending on the clinical scenario.	33
Figure 6	Bar graph presentation of the frequency (in percentage) of different clinical conditions thought to be associated with IAH or ACS.	35
Figure 7	Setup for transducer technique for measuring intra-abdominal pressure with a manifold.	52
Figure 8	Transducer setup with a specimen port.	54
Figure 9	AbViser Autovalve.	55
Figure 10	Intra-abdominal pressure measurement by using the transducer method.	55

Figure 11	U-tube technique.	57
Figure 12	Urinary manometer tool.	58
Figure 13	Urinary manometer tool.	58
Figure 14	57 years old man with diabetes who had laparotomy for infective aortitis.	61
Figure 15	76 years old woman after motor vehicle accident.	63
Figure 16	20 years old woman who presented with traumatic placental abruption at 26 weeks' gestation.	63
Figure 17	50 years old man after motor vehicle accident.	64
Figure 18	54 years old man who underwent orthotopic liver transplantation.	65
Figure 19	67 years old man who presented with severe acute pancreatitis.	66
Figure 20	Components of intra-abdominal hypertension (IAH) management.	72
Figure 21	Updated intra-abdominal hypertension (IAH)/abdominal compartment syndrome (ACS) management algorithm. IAP intraabdominal pressure.	74
Figure 22	Intra-abdominal hypertension (IAH) assessment algorithm.	76

Figure 23	Intra-abdominal hypertension (IAH)/abdominal compartment syndrome (ACS) medical management algorithm.	79
Figure 24	Bar graph presentation of the frequency (in percentage) of different indications for performing a decompressive laparotomy in ACS.	88
Figure 25	Edematous bowel following motor vehicle crash and subsequent vertical midline incision to relieve ACS.	90
Figure 26	Transverse laparotomy.	90
Figure 27	Bar graph presentation of the frequency (in percentage) of different treatment options for IAH or ACS.	94
Figure 28	Covering transverse laparotomy with "self-made" negative pressure dressing.	98
Figure 29	(A) Initial incision to relieve ACS. (B) After 48 hours of VAC. Therapy, ACS is resolved. (C) Abdomen is closed.	100

List of tables

Table No.	TITLE	Page No.
Table 1	Final 2013 consensus definitions of the World Society of the Abdominal Compartment Syndrome.	31
Table 2	Clinical application of IAH/ACS classification.	32
Table 3	Adverse effects of intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS).	42
Table 4	Physiological factors impacting on intra-abdominal pressure (IAH).	45
Table 5	Procedure for transducer setup with a manifold.	53
Table 6	Procedure for transducer setup with a specimen port.	54
Table 7	U tube method for the manometer technique.	57
Table 8	CT findings in patients with abdominal compartment syndrome.	67

Table 9	Final 2013 WSACS consensus recommendation of management statements.	73
Table 10	Proposed classification of the open abdomen.	95
Table 11	Common surgical options for ACS management.	101

INTRODUCTION

Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are distinct clinical entities and should not be used interchangeably. Intra-abdominal pressure (IAP) is the steady state pressure concealed within the abdominal cavity. Intra-abdominal hypertension (IAH) is defined by a sustained or repeated pathological elevation in IAP≥12mmHg and abdominal Compartment Syndrome (ACS) is sustained IAP > 20 mmHg associated with organ dysfunction.

The normal range described above is not applicable for all patients. Patients with increased abdominal girth that developed slowly may have higher baseline intra-abdominal pressures. As an example, morbidly obese and pregnant individuals can have chronically elevated intra-abdominal pressure (as high as 10 to 15 mmHg) without adverse squeal (Malbrain and Cheatham, 2011).

An increase in intra-abdominal pressure leads to multisystem dysfunction. Pressure within the abdominal cavity is directly transmitted to the abdominal vasculature. Compression of the venous system leads to venous occlusion and a reduction in preload, while arterial compression leads to reduced arterial compliance and an increased after load. This combination leads to a decrease in cardiac output and often, abdominal perfusion pressure (Pelosi and Vargas, 2012).

Although initially considered a disease of the traumatically injured, IAH/ACS is now recognized as a cause of significant organ failure, morbidity and mortality in all critically ill patient populations. Given the broad multitude of predisposing conditions that may lead to the development of IAH/ACS.

We believe it is useful to classify ACS as either: primary, secondary, or recurrent according to the duration and cause of the patient's IAH. The duration of IAH, in conjunction with the acuity of onset as described above, is commonly of greater prognostic value than the absolute increase in IAP. Patients with prolonged untreated elevations in IAP commonly manifest inadequate perfusion and subsequent organ failure (Macedo et al, 2015).

Intra-abdominal pressure measuring in the past was through nasogastric catheters, inferior vena cava vein or directly intraperitoneally. Recently, the method of choice is used through urinary bladder by sterile procedure (Rosemary, 2012).

Clinically, abdominal hypertension with abdominal distention and a tense abdominal wall presents with shallow respiration with an increased respiration rate, high diaphragms on percussion and auscultation, poor urinary output, and increased central venous pressure. Intubated patients require increased ventilator pressure (Harrell and Melander, 2012).

Radiological findings done by CT scan were: extrinsic compression of the inferior vena cava by retroperitoneal hemorrhage or exudate, and massive abdominal distention with an increased ratio of anteroposterior-to-transverse abdominal diameter, direct renal compression or displacement, bowel wall thickening with enhancement (Aashish et al, 2007).

One of the key aims in management is to optimize cardiac output. Cardiovascular compromise due to the increased intraabdominal pressure is much more marked in the hypovolemic under-resuscitated patient. Initial fluid resuscitation should be aimed at restoring normovolemia.

Central venous pressure measurement and pulmonary artery wedge pressures may be misleading as a guide to fluid replacement as they may be falsely elevated due to the intrathoracic pressure increase; however, trends and response to fluid challenges may be of benefit. Markers such as stroke volume variation that are independent of intra-thoracic pressure may be useful guides to fluid resuscitation (**Rubenstein et al, 2015**).

Surgical intervention, the decompression of the abdomen by way of laparotomy has been shown to improve mortality in patients with abdominal compartment syndrome. After laparotomy, the abdominal cavity is simply a larger closed compartment and further increases in volume may still result in an