

Histological, Immunohistochemical and Ultrastructural Studies on a Glucocorticoid-Induced Osteoporosis Model and The Probable Curing or Protective Role of Certain Anabolic or Antiresorptive Natural Products

Thesis

Submitted to Faculty of Science

Ain Shams University

In Partial Fulfillment of

Master Degree of Science(M.Sc.)

By

Eslam Muhammad Bastawy

(B. Sc., 2008)

Zoology Department Faculty of Science Ain Shams University

Prof. Dr. Monir Ali El-Ganzuri

Professor of Cell Biology, Zoology Department, Faculty of Science, Ain Shams University.

Prof. Dr. Rasha Rashad Ahmed

Professor of Cytology, Histology and Histochemistry, Zoology Department, Faculty of Science, Beni-Suef University.

2015

APPROVAL SHEET

The Title of the M.Sc. Thesis:

Histological, Immunohistochemical and Ultrastructural Studies on a Glucocorticoid-Induced Osteoporosis Model and The Probable Curing or Protective Role of Certain Anabolic or Antiresorptive Natural Products.

Submitted to:

The Zoology Department, Faculty of Science, Ain Shams University,

The Name of Candidate:

Eslam Muhammad Bastawy

The Supervision Committee:

1-Prof. Dr. Monir Ali El-Ganzuri

Professor of Cell Biology, Zoology Department,	Faculty	of S	cience,	Ain	Shams
University.					
• • • • • • • • • • • • • • • • • • • •	• • • •				
2-Prof. Dr. Rasha Rashad Ahmed					
Professor of Cytology, Histology and Histochemist of Science, Beni-Suef University.	ry, Zool	ogy I	Departm	ent,	Faculty

Acknowledgments

Acknowledgments

First and foremost, my deep gratefulness and indebtedness are to my God whose grace, power and care safe-guarded me during this thesis.

Second, my sincere appreciation goes to **Prof. Dr. Monir Ali El-Ganzuri** Professor of Cell Biology, Department of Zoology, Faculty of Science, Ain Shams University for his talented concepts, continuous encouragement and utter support along this work. I am so honoured to work under his full supervision. His parental care, greet support, generous assistance constructive criticism and fruitful direction during supervision cannot be denied. I am really lucky to gain such an opportunity to work with this ideal mentor.

There are no words enough to acknowledge my profound gratitude, great pleasure and deep thanks to my supervisor **Prof. Dr. Rasha Rashad Ahmed** professor of Cytology, Histology and Histochemistry, Zoology Department, Faculty of Science, Beni-Suef University, for her kind support, efficient help, continuous encouragement, valuable advice and guidance throughout the work. My great respect and thanks for her patience, valuable criticism and her scientific generosity contributed a lot to the final shape of the work, indeed she is of a great value for this work. I am really glad to have the opportunity to thank you doctor for everything.

This thesis is dedicated to my father's soul, **Prof. Dr. Mohamed Bastawy Ahmed** Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Beni-Suef University, who encouraged me all the way long and provided all facilities from the beginning of the work. I wish he was here to see his dream come true. I also use this thesis to pray that the soul of my father may rest in perfect peace under the mercy of Allah and may Allah grant him Jannat El-Firdaus.

CONTENTS

CONTENTS

Pages

-ACKNOWLEDGMENTS	I
1. INTRODUCTION	1
2. AIM OF THE WORK	5
3. REVIEW OF LITRETURE	7
3.1. The structural organization of bone	8
3.1.1- The bone cells	
3.1.2- The organic matrix	
3.1.3- Crystalline inorganic matrix	
3.1.4- Soluble factors	
3.2- Bone Remodelling	16
3.2.1- Biochemical markers of bone remodelling	
3.2.1.1- Biochemical markers of bone formation	
3.2.1.2- Biochemical markers of bone resorption	
3.3- Bone Regeneration	24
3.4- Regulatory Mechanisms of Development and Function	26
of Bone	20
3.4.1- Regulatory mechanisms of chondrocytes	
3.4.2- Regulatory mechanisms of osteoblasts	
3.4.3- Regulatory mechanisms of osteoclasts	

3.5- Bone diseases 30		
3.5.1- Types of osteoporosis	30	
3.5.1.1- Primary osteoporosis		
3.5.1.1.a- Primary osteoporosis type I (or)		
postmenopausal osteoporosis		
3.5.1.1.b- Primary osteoporosis type II		
3.5.1.2- Secondary osteoporosis		
3.5.2- Epidemiology of osteoporosis	32	
3.5.3- Experimental models of osteoporosis	33	
3.5.3.1- Pharmaceutical agents		
3.5.3.2- Immobilization osteoporosis		
3.5.3.2.1- Glucocorticoid-induced		
osteoporosis (GIO)		
- Glucocorticoids and bone formation		
(Osteoblasts and Osteocytes).		
- Glucocorticoids and bone resorption		
(Osteoclasts)		
3.5.4- Examples of glucocorticoid-induced		
osteoporosis (PREDNISOLONE)		41
3.5.4.1- Nomenclature and structure		
3.5.4.2- Pharmacokinetic properties		
- Absorption and bioavailability		

- Distribution		
- Metabolism and excretion		
3.5.5. Glucocorticoid and apoptosis	43	
3.5.6- Management of glucocorticoid-induced osteoporosis	44	
3.5.7.Osteoporosis treatment	45	
3.5.7.1. Anabolic agents		
3.5.7.1.a. Statins		
3.5.7.2. Antiresorptive agents		
3.5.7.2.1. Grapefruit as a source of antioxidants		
4. MATERIALS AND METHODS		53
4.1. Experimental animals	•	
4.2. Drugs and chemicals		
4.2.1- Prednisolone		
4.2.2- Lova	,	
4.2.3- Biochemical and immunohistochemical detection kits		
4.2.4- Other chemicals		
4.2.5. Preparation of grapefruit juice extracts		
. Dosage 54		
4.3.1. Inducing agent (Prednisolone)		
4.3.2. Anabolic agent (Lova)		
4.3.3. Antiresorptive agent (Grapefruit)		
4.4. Animal Grouping	56	
4.5 Eynerimental Design		60

4.5.1- Macroscopic examination	
4.5.2- Bone (femoral) density	
4.5.3- Bone (femoral) ash determination	
4.5.4- Femoral Ca ⁺² content	
4.5.5- Time-induced fracture by mechanical testing	
4.5.6- Biochemical variables	
4.5.7- Scanning electron microscopic (SEM) examination	
4.5.8- Light microscopic examination	
4.5.8.1. Haematoxylin and Eosin (H&E)	
4.5.8.2. Immunohistochemical Studies	
5. RESULTS	71
6. DISCUSSION	114
7. SUMMARY AND CONCLUSION	141
8. REFERENCES	146
9. ARABIC SUMMARY	192

List of Tables

Table	Page number
1. The biochemical markers of bone formation	22
2. The biochemical markers of bone resorption	23
3.Bone (femoral) density	82
4. Mineral content in the bone ash	83
5. Femoral Ca ⁺² content	84
6. Time-consumed to get pressure-induced fracture by the three-points bending test	85
7. Alkaline Phosphatase (ALP) concentration	86
8. Tartrate-resistant acid phosphatase (TRAP) activity	87
9. Insulin-like growth factor 1 (IGF-1) concentration	88

List of Figures

Table	Page number
1. The bone structure	11
2.Schematic diagram of types of bone cells	14
3.Schematic diagrams of Bone remodelling cycle (a, b, c, d)	19
4. Bone formation during development, remodelling	27
5. Experimental models of osteoporosis	34
6. Mechanisms of glucocorticoid-induced osteoporosis	36
7. Direct effects of glucocorticoids on bone	37
8.Effect of glucocorticoids on bone cells	40
9.Structure of prednisolone C ₂₁ H ₂₈ O ₅	42
10. Probable Mechanism of action of statins on osteoclast activation	48
11. Structures of flavonoids and furanocoumarins present in grapefruit juice	51
12. Animal grouping and treatment schedule	60
13. The mechanism of action of (ABC) system, and the molecular	65
structure of DAB (substrate kit) and quinone-imines	
(coloured products of the reaction)	
14. Macroscopic examination	81

15. Bone (femoral) density	82
16. Mineral content in the bone ash	83
17. Femoral Ca ⁺² content	84
18. Time-consumed to get pressure-induced fracture by the three-points bending test	85
19. Alkaline Phosphatase (ALP) concentration	86
20.Tartrate-resistant acid phosphatase (TRAP) activity	87
21. Insulin-like growth factor 1 (IGF-1) concentration	88
22. Scanning electron micrographs of the normal, placebo control and positive control groups(22, 23, 24).	89
23. Scanning electron micrographs of the osteoporotic groups (25, 26, 27).	92
24. Scanning electron micrographs of the osteoporotic-treated groups(28, 29, 30).	95
25. Photomicrographs of sections of thenormal, placebo control and positive control groups	98
26. Photomicrographs of sections of the osteoporotic groups (36, 37, 38, 39, 40, 41). H& E	101
27. Photomicrographs of sections of the osteoporotic-treated groups (42, 43, 44, 45). H & E	104
28. Photomicrographs of longitudinal sections of rat femur showing osteocalcin expression (46).	106
29. Photomicrographs of sections at the proximal end of the	109
femur showing RANKL expression (47). 30. Photomicrographs of sections at the proximal end	111
of the femur showing osteoprotegerin (48).	

List of Abbreviations

List of Abbreviations

(GIO)	Glucocorticoid-induced osteoporosis
(Gs)	Glucocorticoids
(SEM)	Scanning electron microscope
(GAGs)	Glycosaminoglycans
(Gly)	Glycine
(Gla)	Gamma-carboxyglutamic acid
(HA)	Hydroxyapatite
(EGF)	Epidermal growth factor
(FGF)	Fibroblast growth factor
(PDGF)	Platelet-derived growth factor
(IGF-1)	Insulin-like growth factor one
(TGF-β)	Transforming growth factor beta
(CDGF)	Cationic cartilage-derived growth factor
(hSGF)	Human skeletal growth factor
(BMUs)	Bone remodelling units

(WHO)	World health organization
(CT)	Computed tomography
(DXA)	Dual X-ray absorptiometry
(MRI)	Magnet resonance imaging
(bAP)	Bone-specific alkaline phosphatase
(OC)	Osteocalcin
(PINPs)	Procollagen I N-terminal extension peptides
(PICPs)	Procollagen I C-terminal extension peptides
(TRAP)	Tartrate-resistant acid phosphatase
(HP)	Hydroxyproline
(Pyr)	Pyridinoline
(Depyr)	Deoxypyridinoline
(NTx)	N-telopeptide of collagen type I
(CTx)	Carboxy-terminal cross-linking region of collagen type I
(RANK)	Receptor activator of nuclear factor kappa
(RANKL)	Receptor activator of nuclear factor kappa ligand