Proper Selection of Antibiotics in Ophthalmology

Essay
Submitted for partial fulfillment of Master Degree
in
Ophthalmology

By

Nada Abdel Salam Abdel Aziz

M.B., B.Ch - Ain Shams University

Supervised by

Prof.Dr Hoda M.Saber Naeim

Professor of Ophthalmology Faculty of Medicine-Ain Shams University

Dr. Mahmoud Abdel Hamid

Assistant professor of Ophthalmology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain-Shams University Cairo 2015

سورة البقرة الآية: ٣٢

Acknowledgement

I would like to express my gratitude to **Professor Dr.Hoda**Saber Naeim, Professor of Ophthalmology, Faculty of MedicineAin Shams University for her helpful supervision and caring guidance.

I would also like to thank assistant **Professor Dr.Mahmoud Abd El Hamid,** Assistant professor of Ophthalmology, Faculty of

Medicine-Ain Shams University for his valuable instructions, his

thorough advice and kind assistance throughout this work.

Nada A.El Salam

CONTENTS

	Page
Acknowledgement	,
List of Abbreviations	
List of Figures	ii
List of Tables	
List of Flow Charts	\mathbf{v}
Chapter one: Introduction and aim of the work	. 1
Chapter two: Nature of the target pathogens	
• Classification of:	
* Bacteria	5
Fungi	10
Microbial growth	11
Mechanism of pathogenicity	15
• Flora of the eye	16
Chapter three: Antibiotics	18
• History	18
• Criteria of a clinically useful antibiotic	. 21
 Classification of antibiotics: 	
 Antibacterials 	24
Antifungals	66
Chapter four: Antibiotics in Ophthalmology	75
Routes of administration	. 75
Selection of antibiotics	. 86
For management of ocular infections	
1) Eye lid infections	86
2) Lacrimal infections	
3) Orbital infections	
4) Conjunctivitis	
5) Infective keratitis	. 107

CONTENTS (Cont.)

	Page
6) Infective scleritis	114
7) Blebitis	114
8) Bacterial uveitis	115
9) Fungal uveitis	118
10) Endophthalmitis	119
* Patient factors affecting the choice of	
antibiotics	127
* Prophylactic use of antibiotics	135
1) In surgical prophylaxis	135
2) In ocular traumatology	137
Antibiotic resistance	139
Summary	145
References	150
Arabic Summary	

List of Abbreviations

AIDS	Acquired immune deficiency syndrome	
ASCRS	American Society for Cataract And Refractive Surgery	
b.i.d	Bis in die (Latin)=twice/day	
CDC	Center of Disease Control and Prevention	
DNA	Deoxy ribo-nucleic acid	
ESCRS	Europian Society for Cataract and Refractive Surgery	
EVS	Endopthalmitis Vitrectomy Study	
FDA	Food and Drug Administration	
MAC	Mycobacterium avium complex	
MIC	Minimal inhibitory concentration	
MRSA	Methicillin resistant staphylococcus aureus	
MRSE	Methicilin resistant staphylocoocus epidermidis	
ОЕННА	Office of Environmental Health Hazard Assessment	
PABA	Para-amino benzoic acid	
PPV	Pars plana vitrectomy	
q.i.d	Quarter in die (Latin)=four times/day	
RNA	Ribo-nucleic acid	
t.i.d	Ter in die (Latin)=three times/day	
TASS	Toxic anterior segment syndrome	
VISA	Vancomycin intermediate resistant staph aureus	
VRE	Vancomycin resistant enterococci	
VRSA	Vancomycin resistant staph aureus	

List of Figures

Fig.	Title	
1	Prokaryotic and eukaryotic cell.	
2	Common shapes and arrangement of bacteria.	6
3	The structure of Gram positive and Gram negative	8
	bacteria.	
4	Diagrammatic representation of bacterial staining.	8
5	Gram stain of Staph.aureus and E.coli .	9
6	Fungal morphology.	
7	DNA replication.	
8	Transcription and translation.	
9	Major killing effect of the antibiotics.	
10	Classification of antibacterials.	
11	The Beta Lactam ring.	
12	Antibiotic inhibition of 30 S subunit	
13	Antibiotic inhibition of 50 S subunit	
14	Gray baby sundrome.	
15	Effect of Quinolones on the DNA.	
16	Site of action of Sulfonamides.	
17	Classification and mechanism of action of	67
	antifungals.	
18	8 Ocular pharmacology of antibacterial agents.	

$List\ of\ Figures\ ({\tt Cont.})$

Fig.	Title	Page
19	External hordeolum (stye).	86
20	Impetigo.	87
21	Erysipelas.	87
22	Necrotizing fasciitis.	88
23	Chronic anterior blepharitis.	89
24	Chronic posterior blepharitis.	90
25	Preseptal and orbital cellulitis.	95
26	Ophthalmia neonatorum.	105
27	Acute postoperative bacterial endophthalmitis.	120
28	Idiosynchratic hepatotoxicity of antibiotics.	132
29	Development of antibiotic resistance.	140

List of Tables

Table	Title	
1	Structural differences between prokaryotes and	4
	eukaryotes.	
2	The sources of the common natural antibiotics.	20
3	Classification of antibacterials.	25
4	Different members and generations of	32
	Cephalosporins.	
5	The spectrum of different Cepharosporin	36
	generations.	
6	Routes of administration of the most common	36
	Cephalosporins.	
7	Tetracycline classification.	43
8	The doses of some commonly used antibiotics,	85
	when used via different routes.	
9	Preparation of fortified antibiotics.	109
10	Preparation of intravitreal antibiotics. 1	
11	FDA categorization of drugs used in pregnancy.	128
12	Some common commercial antibacterials.	148
13	Antifungals used in ophthalmology.	149

List of Flow Charts

Flow Chart	Title	Page
1	Classification of bacteria	
2	Cell wall inhibitors.	26
3	Protein synthesis inhibitors.	41
4	DNA synthesis inhibitors.	54
5	Folic acid synthesis inhibitors.	61

Introduction

Antibiotics are one of the great miracles of modern medicine. Selman Waksman, the microbiologist who discovered Streptomycin, first applied the word "antibiotic" in the medical sense in 1943. (*Pramer*, 1988)

He defined antibiotics as "chemical substances that are produced by microorganisms and that have the capacity, in dilute solution, to selectively inhibit the growth of other microorganisms and even to destroy them". (*Pramer*, 1988)

With advances in medicinal chemistry, most modern antibacterials and antifungals are semi-synthetic modifications of various natural compounds or synthetic products generated as structural analogues of natural antibiotics. (*Beale and Block*, 2011)

Meanwhile, the development of antivirals has lagged far behind that of antibiotics. Unlike antibiotics, antiviral drugs cannot destroy their target; instead they inhibit a virus from reproducing and developing. A virus is just a genetic material, DNA or RNA, wrapped in a protein coat. It is technically not alive, as it lacks key characteristics (such as cell structure) that are generally considered necessary to count as life. Further, a virus replicates by hijacking the machinery of the cell it infects, which makes it hard to kill without killing the cell. (*Canchaya et al.*, 2003)

The appropriate use of antibiotics to prevent infection continues to be a topic of great debate in ophthalmology. Antibiotics are not only prescribed to patients with ocular infections, but also as prophylaxis against microbial infections. (*Puchalski*, 2008; Kuehn, 2011)

Normally, the eye is impermeable to most infectious agents. However, in some circumstances; infectious agents gain access to the eye such as;

- (i) Following intraocular surgery.
- (ii) Following a penetrating injury of the globe.
- (iii) Following haematogeous spread to the eye from a distant anatomical site. (*Mistlberger*, 1997; *Srinivasan* et al., 1999)

Infection of the eye includes; infections of eye lids, conjunctivitis, keratitis, dacryocystitis, preseptal cellulitis, orbital cellulitis, uveitis, endophthalmitis, panophthalmitis, etc. which are responsible for increased incidence of morbidity (blindness) worldwide. (*Sharma*, 1999)

N.B.

This study is a non-profitable one. The trade names of the antibiotics mentioned in the study are the most commonly used in the market. They are mentioned for the aim of clarification.

Aim of the Work

The aim of this work is to give a re-orientation and review of the different classes and new generations of antibiotics. Also, to show the basis of selecting the appropriate antibiotics in ophthalmic practice. The study will also highlight the phenomenon of antibiotic resistance and the main misconceptions associated with the use of antibiotics.

Nature of the target pathogens

Living cells in our world come in two basic types; prokaryotic and eukaryotic. "Karyose" comes from a Greek word which means "kernel," as in a kernel of grain. In biology, we use this word root to refer to the nucleus of a cell. "Pro" means "before" and "eu" means "true" or "good." So "Prokaryotic" means "before a nucleus" and "eukaryotic" means "possessing a true nucleus". (*Stanier et al., 1962*)

<u>Eukaryotes</u> are organisms whose cells have a nucleus that holds the cell's DNA. Animals, plants, protists and fungi are all eukaryotes because they all have a DNA-holding nuclear membrane within their cells. (*Gupta*, 2000) (*Mullen*, 2001)

<u>Prokaryotes</u>, on the other hand, lack this nuclear membrane. Instead, the DNA is part of a protein-nucleic acid structure called the nucleoid. Bacteria are all prokaryotes. (*Gupta*, 2000) (*Mullen*, 2001)

The structural difference between the two groups is summarized in table(1) and in figure(1).

	Prokaryotes	Eukaryotes
	DNA is naked (no histones)	DNA associated with histones
DNA	DNA is circular	DNA is linear
	Genes do not contain introns	Genes may contain introns
	DNA found in cytoplasm (nucleoid)	DNA found in nucleus
Internal Structures	No membrane-bound organelles	Have membrane-bound organelles
Ribosomes	Have 70S ribosomes	Have 80S ribosomes
Reproduction	Asexual (binary fission)	Asexual (mitosis) or sexual (meiosis)
	DNA is singular (haploid)	DNA is usually paired (diploid or more)
Average Size	Smaller (≈1 – 5 μm)	Larger (≈10 – 100 μm)

Table (1): The structural differences between prokaryotes and eukaryotes (http://www.vce.bioninja.com.au/aos-1-molecules-of life/cells/eukaryotes.html)

*Histones**: are nuclear proteins that act as spools around which DNA winds. Without histones,the unwound DNA in chromosomes would be very long.(*Youngson & Robert, 2006*)

Introns*: An intron is any nucleotide sequence within a gene that is removed by RNA splicing during maturation of the final RNA product. Introns do not encode protein products, but are integral to gene expression regulation. (ReaRick et al., 2011)

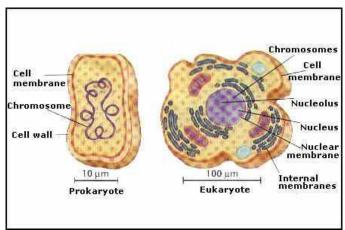


Figure (1): Prokaryotic and eukaryotic cell (http://facts about cells.weebly.com/eukaryotic-and-prokaryotic.html)

Classification of Bacteria

Bacterial classification has been done on the basis of traits such as: shapes and arrangement, oxygen requirements, ability to form spores and reaction to Gram staining. (Murray et al., 2007)⁽¹⁾

- **Shapes and arrangement**: figure (2)some common shapes of bacteria are:
 - o Cocci: spherical in shape.
 - o Bacilli: cylindrical or rod shaped.
 - Spiral: a curved rod, long enough to form spirals. They are spirilla if rigid and spirochaetes if flexible.
 - o Vibrio: a short curved rod (comma shaped).

Many bacterial species exist simply as single cells, others associate in characteristic patterns, for example; Neisseria form diploids (pairs), Streptococci form chains, and Staphylococci group together in "bunch of grapes" clusters. Bacteria can also be elongated to form filaments, for example the Actinobacteria. Filamentous bacteria are often surrounded by a sheath that contains many individual cells. Certain types, such as species of the genus Nocardia, even form complex, branched filaments, similar in appearance to fungal mycelia. (*Young*, 2006)