THROMBOPHILIC GENE MUTATIONS IN CASES WITH RECURRENT MISCARRIAGE: A STUDY IN THE EGYPTIAN POPULATION

THESIS

SUBMITTED FOR THE PARTIAL FULFILLMENT OF THE M.D. DEGREE IN CLINICAL AND CHEMICAL PATHOLOGY

BY

NELLY NADER ABDELDAYEM ABULATA

(M.B.B.Ch., M.Sc. in Clinical & Chemical Pathology)

SUPERVISED BY

PROF. DR. SAMIR HASSAN SAHLAB

PROF.OF CLINICAL & CHEMICAL PATHOLOGY FACULTY OF MEDICINE CAIRO UNIVERSITY

PROF. DR. NAGUIB ZOHEIR MOSTAFA

PROF. OF CLINICAL & CHEMICAL PATHOLOGY FACULTY OF MEDICINE CAIRO UNIVERSITY

PROF. DR. AHMED ALI SHAMS ELDIN

PROF. OF CLINICAL & CHEMICAL PATHOLOGY FACULTY OF MEDICINE CAIRO UNIVERSITY

FACULTY OF MEDICINE CAIRO UNIVERSITY 2008

بسم الله الرحمن الرحيم

Abstract

Thrombophilia by definition represents acquired and/or genetic conditions that predispose patients to both venous and arterial thromboembolic events. Thrombosis is the most common cause of death worldwide. On the arterial side, myocardial infarction and stroke result in significant morbidity and mortality. Venous thromboembolic events most commonly involve the deep veins of the lower extremity with potential complications of pulmonary emboli. Pregnancy is a hypercoagulable state, and thromboembolism is the leading cause of antepartum and postpartum maternal mortality. Recent attention has focused on certain inherited thrombophilic factors that may predispose to arterial and/or venous thromboses and their possible association with pregnancy complications, including early pregnancy loss. These include a group of mostly autosomal dominant, inherited gene mutations leading to a hypercoagulable state, such as factor V Leiden G1691A, factor II or prothrombin G20210A, and hyperhomocysteinemia associated with Methylenetetrahydrofolate reductase C677f mutation. With the identification of genetic risk factors, there has been synergistic amplification of thrombotic risk when one has an abnormal gene (e.g., factor V Leiden) plus environmental issues (e.g., pregnancy). The results of our study suggested that PTH & MTHFR mutations are associated with recurrent pregnancy loss but not FVL mutations.

KEYWORDS: Recurrent pregnancy loss, thrombophilias, coagulation abnormalities, miscarriage.

Dedication

To my mother...

Thank you for the caring things you do and the kind things you say, for always being there for me each and everyday. Thank you for encouraging me to live life to the full, for the confidence that makes me see all things possible. Thank you for making me feel valued no matter what I do and for the person I've become. Mum, I owe it all to you...

Acknowledgment

I would like to express my deepest, sincere gratitude and cordial appreciation to **Prof. Dr. Samir Sahlab** Professor of Clinical Pathology, Faculty of Medicine, Cairo University for his never ending support and priceless advice throughout my work. I am at a loss in finding the right words worthy of his praise.

I am deeply indebted to **Prof. Dr. Naguib Zoheir** Professor of Clinical Pathology, Faculty of Medicine, Cairo University for his keen interest and valuable comments. Working under his supervision has been indeed an enlightening experience.

I dutifully acknowledge the support and supervision of **Prof. Dr. Ahmed Shams Eldin** Professor of Clinical Pathology, Faculty of Medicine,

Cairo University. He willingly offered his time and help.

I am also greatly indebted to **Prof. Mervat ElAnsary** Professor of Clinical Pathology, Faculty of Medicine, Cairo University & her team without her support this work was not going to be feasible.

I owe thanks & appreciation to **Assist Prof. Hanan Nour** Assistant Professor of Clinical Pathology, Faculty of Medicine, Cairo University for her effort in arranging to get the required reagents for this study.

I wish to thank **Dr. Mennat Allah Kamal** Lecturer of Clinical Pathology, Faculty of Medicine, Cairo University for her help and support.

I would like to express my gratitude to **Dr. Mervat Khorshid** Lecturer of Clinical Pathology, Faculty of Medicine, Cairo University for her support & encouragement throughout my work.

I wish to thank **Dr. Aly Mouafy** Specialist of Clinical Pathology, Faculty of Medicine, Cairo University for his help and support.

I'm profoundly indebted to **Dr. Walled El-Khayat** Lecturer of Obstetrics & Gynaecology, Faculty of Medicine, Cairo University for his help in finding cases for my study.

Finally, I would like to express my gratitude to all the staff, colleagues and personnel working in the Clinical Pathology Department, Kasr El Aini Hospital.

CONTENTS

List of tables	Pageiii
List of figures	
List of abbreviations.	
I. INTRODUCTION AND THE AIM OF THE WORK.	1
II. REVIEW OF LITERATURE	3
A. Historical review	3
B. Background information	6
1. Haemostatic balance	8
a. Clotting mechanism	8
b. Antithrombotic mechanism	10
c. Pregnancy & haemostasis	10
2. Thrombophilic factors/ defects associated with recur	
miscarriages	
a. Inherited thrombophilia factors/ defects	
•	
i. FVL (G1691A) mutation	
ii. PTH (G20210A) mutation	
iii. Antithrombin deficiency	15
iv. Protein C deficiency	16
v. Protein S deficiency	17
vi. Heritable APC resistance not invol	lving
factor V Leiden	19
vii. Combination of defects	19

b. Acquired thrombophilic factors/defects	20
i. Antiphospholipid antibodies	20
ii. Acquired APC resistance	22
c. Complex thrombophilic defects	23
i. Raised factor VIII activity	23
ii. Hyperhomocystenaemia	23
3. Thrombophilia and pregnancy outcomes	26
a. Early pregnancy loss	27
b. Late pregnancy loss	28
c. Pre-eclampsia	29
d. Placental abruption	29
e. IUGR	30
4. Prophylactic interventions	30
III. SUBJECTS & METHODS	32
IV. RESULTS	44
VI. DISCUSSION	54
VI. SUMMARY & CONCLUSION	63
VIII. REFERENCE.	65
V. APPENDIX	76
IX ARABIC SUMMARY	86

List of abbreviations

ACA : Anticardiolipin antibody

APA : Antiphospholipid antibody

APCR : Activated Protein C Resistance

APTT : Activated partial thromboplastin time

C-section: Caesarian section

CBS : Cystathionine-Synthase

CRP : C- reactive protein

CMV : Cytomegalovirus

DVT : Deep vein thrombosis

DNA : Deoxy ribonucleic acid

EBV : Epstein Barr virus

EDTA: Ethylenediamine tetra-acetic acid

FVL : Factor V Leiden

HCG : Human chorionic gonadotropin

IUGR : Intrauterine growth restriction

LMW : Low molecular weight

MTHFR: Methylenetetrahydrofolate reductase

MS : Methionine Synthase

PAI-1 : Plasminogen activator inhibitor- 1

PCR : Polymerase chain reaction

PE : Pulmonary embolism

PT : Prothrombin time

RM : Recurrent miscarriage

RPL: Recurrent pregnancy loss

VTE : Venous thromboembolism

List of tables

Ta	Table number Page		
1.	History of thrombophilia	3	
2.	Venous thrombosis: Risk factors relevant to pregnancy	7	
3.	Arterial thrombosis: Risk factors relevant to pregnancy	7	
4.	Common thrombophilias possibly associated with recurrent		
	Pregnancy loss	12	
5.	Data for cases & controls	44	
6.	Frequency of FVL Mutation	52	
7.	Frequency of PTH Mutation	52	
8.	Frequency of MTHFR Mutation	52	
9.	Frequency of gene mutations in cases & controls	61	
10.	. Relation between timing of miscarriage & gene mutations	62	
11.	. Odd's ratio & confidence interval of gene mutations	63	

List of figures

Fi	Figure number	
1.	Haemostatic balance	9
2.	Homocysteine metabolism	25
3.	FVL genotypes in cases	47
4.	PTH genotypes in cases	47
5.	MTHFR genotypes in cases	47
6.	Frequency of genotypes in cases	48
7.	FVL genotypes in controls	50
8.	PTH genotypes in controls	50
9.	MTHFR genotypes in controls	50
10	. Frequency of genotypes in controls	51

INTRODUCTION

Thrombophilia by definition represents acquired and /or inherited conditions that predispose to both venous and arterial thrombosis. Thrombosis is the most common cause of death worldwide. Pregnancy is a hypercoaguable state and thromboembolism is a leading cause of antepartum and postpartum mortality (Kutteh et al, 2006).

Recurrent miscarriage is a heterogeneous condition (Heilmann, 2005). The role of acquired thrombophilia has been accepted as the aetiology of recurrent miscarriages, the contribution of specific inherited thrombophilia genes to this disorder has remained controversial (Coulam et al, 2006).

Over the past few decades, genetic defects in the proteins regulating blood coagulation have been established as possible risk factors predisposing to venous thromboembolism. These genetic defects are relatively frequent (Yoshioka et al, 2006).

Factor V Leiden (FVL), Prothrombin (PT) and Methylenetetrahydrofolate reductase (MTHFR) gene mutations are the three most important causes of thrombophilia (Behjati et al, 2006), and are associated with high risk of recurrent miscarriages (Kutteh et al, 2006 & Lissalde- Lavigne et al, 2005).

Several studies were carried out worldwide to study the prevalence of these genetic mutations (single or multiple) in association with recurrent miscarriage.

AIM OF THE WORK

The aim of this case control comparative study was to investigate the prevalence of Factor V Leiden (FVL), Prothrombin (PT) and Methylenetetrahydrofolate reductase (MTHFR) gene mutations in women with recurrent miscarriages compared to the prevalence of the same mutations in healthy age- matched fertile parous women in Egypt.

A-HISTORICAL REVIEW

In 1856, Rudolf Virchow, a German Pathologist, proposed a hypothesis to explain the pathogenesis of thrombosis. He suggested three primary causes of venous and arterial thrombosis: stasis, injury to the vessel and abnormalities in the circulating blood. Subsequently, numerous investigators contributed the concept of a haemostatic balance between fibrin formation and fibrin dissolution. Although many families with a predisposition to thrombosis were subsequently described, it wasn't until 1965 that a Norwegian Physician, O. Egberg reported a family with antithrombin deficiency (Egeberg, 1965).

Thrombophilia can be defined as hereditary or acquired conditions which predispose individuals to thromboembolic events. Following Egberg's publication, additional hereditary causes of thrombophilia were identified in the 1980's including protein C and S deficiencies (*Table 1*) (Griffin et al, 1981), (Comp et al, 1984).

1856	Virchow	Thrombosis hypothesis
1965	Egberg	Antithrombin deficiency
1981	Griffin	Protein S deficiency
1984	Comp	Protein C deficiency
1993	Dahlback	APC-R
1994	Bertina	Factor V Leiden mutation
1996	Poort	Prothrombin mutation
1998	Van der Put	MTHFR mutation

Table 1: History of thrombophilia

[&]quot;Quoted from Warde Report archives 1998; 9 (3) (Triplett, 1998)"