

DESIGN OF INTERFERENCE-BASED ALL OPTICAL PHOTONIC CRYSTAL LOGIC GATES

By

Hussein Mohamed El-Sayed Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

DESIGN OF INTERFERENCE-BASED ALL OPTICAL PHOTONIC CRYSTAL LOGIC GATES

By

Hussein Mohamed El-Sayed Hussein

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in **Engineering Physics**

Under the Supervision of

Prof. Nadia Hussein Rafat

Dr. Tamer Ashour Ali

Faculty of Engineering, Cairo University

Engineering Mathematics and Physics Department Engineering Mathematics and Physics Department Faculty of Engineering, Cairo University

DESIGN OF INTERFERENCE-BASED ALL OPTICAL PHOTONIC CRYSTAL LOGIC GATES

By

Hussein Mohamed El-Sayed Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

Approved by the Examining Committee:

Prof. Nadia Hussein Rafat	Thesis Main Advisor	
Prof. Mohamed Hesham Farouk	Internal Examiner	
Prof. Amr Mohamed Ali Shaarawi	External Examiner	
1 IVI. AIIII MUIIAIIICU AII SHAATAWI	Laternal Laminici	
School of Sciences and Engineering, American University in Cairo		

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** Hussein Mohamed El-Sayed Hussein

Date of Birth: 24/02/1992 **Nationality:** Egyptian

E-mail: hessiun_mohamed@cu.edu.eg

Phone: +201008868164

Address: Engineering Mathematics and Physics

Department, Cairo University, Giza 12613

Registration Date: 1/10/2014 **Awarding Date:**/2017

Degree: Master of Science

Department: Engineering Mathematics and Physics

Supervisors:

Prof. Nadia Hussein Rafat Dr. Tamer Ashour Ali

Examiners:

Prof. Nadia Hussein Rafat
Prof. Mohamed Hesham Farouk
Prof. Amr Mohamed Ali Shaarawi
(School of Sciences and Engineering,

American University in Cairo)

(Thesis Main Advisor) (Internal Examiner) (External Examiner)

Title of Thesis:

Design of Interference-Based All Optical Photonic Crystal Logic Gates

Key Words:

Photonic Band Gap; Plane Wave Expansion; Finite-Difference Time-Domain; Optical Interference; Logic Gates

Summary:

A novel design of all-optical logic gates is proposed using the 2D square lattice PhC structure built with dielectric rods surrounded by air. The theory of operation to realize the logic gates functionality is based on the optical interference phenomenon, where logic '1' corresponds to a constructive interference, while the logic '0' corresponds to a destructive interference. The proposed logic gates have compact size and exhibit wide range of operating wavelengths between 1266.9 nm and 1996 nm with center operating wavelength 1550 nm to fulfill various requirements of different applications. We used The PWE and FDTD mathematical methods to analyze the signal's behavior inside the PhC and to calculate the PBG. The calculated maximum contrast ratio in dB for AND, XOR, NOR, NAND and XNOR is found to have values of 6.02, 12.155, 9.02, 8.58 and 9.59, respectively.

Acknowledgements

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions.

I must express my gratefulness and appreciation to my dear advisors Prof. Nadia H. Rafat and Dr. Tamer A. Ali for their assistance, motivation, guidance and patience through out my work.

I would like to thank Dr. Nadia for her spontaneous treatment to me and my colleagues as our mother. She always insists on producing the best out of me and making me stronger and more distinguished. She even cares about my personal life and always gives me advices in many aspects and appreciate my circumstances. Dr. Nadia gave me a lot of her experiences and taught me many things in my technical and personal lives, and this work wouldn't have happened without her help and guidance.

I would also like to thank Dr. Tamer for his wonderful attitude with me that makes me always feel like he is my older brother. He never hesitates to offer help and consultancy in both my technical and personal aspects in my life even in my tiny details. He always cheers me up by all the possible means he can do at my down moments. He was always keen on pushing me to the best, enthusing me and advising me.

I would also like to thank Dr. Ahmed Al Sadek, Dr. Yasser El Batawy, Dr. Mohamed Hisham, Dr. Samia and Dr. Nihal for always treating me like a family member and being always there when I needed them even without asking for their help.

Special thanks to my dear friends Mostafa Radwan and Ahmed Reda for their great help and support and trying to cheer me up in my hard moments. My life with them is really full of fun and joy.

Special thanks to my friends Mohamed Khalifa, Tarek Khedr, Mahmoud Ayyad, Amr Mahmoud, Basem, Moheb, Marina, Shaimaa, Esraa and all my colleagues for their great help and support they presented to me and for making my life more enjoyable.

I am very grateful for my dear wife Safaa for literally everything, she never hesitated to offer me any kind of support all the time even when I don't ask her for it. She helped me in almost all the aspects of this work starting from the very first simulations till the last moment of the editing process. I'm sure that without her, life would be definitely unbearable.

I would express my endless gratitude to my parents for their love, sacrifices, encouragement, patience and support. They have waited so long to see me standing in this moment getting my degree, they prayed for me day and night for that dream and without their prayers I wouldn't have reached anything for sure.

Dedication

To my parents, my wife Safaa and my friends

Table of Contents

A	cknov	vledgements	j
De	edicat	ion	ii
Ta	ble o	f Contents	iii
Li	st of '	Tables	V
Li	st of l	Figures	vi
Li	st of S	Symbols and Abbreviations	X
Al	ostrac	et e	xii
1	INT	RODUCTION	1
	1.1	Motivation	1
	1.2	Photonic Crystals	1
		1.2.1 Historical Background	1
		1.2.2 Types of Photonic Crystals	2
		1.2.3 The Theory of Operation	2
		1.2.4 Applications of Photonic Crystals	3
	1.3	The Photonic Crystal Integrated System	6
	1.4	The Third Dimension Confinement	7
	1.5 1.6	Thesis Objective	8
2	LIT	ERATURE REVIEW	9
	2.1	Self-Collimated Beam	9
	2.2	Multi-Mode Interference (MMI)	13
	2.3	Interference Based Defects	17
	2.4	Nonlinear Kerr Materials	26
3		E PHOTONIC CRYSTAL MATHEMATICAL MODELS	32
	3.1	The Maxwell's Master Equation	32
	3.2	The Schrödinger Correspondence	33
	3.3	The Eigen-Value Problem	33
	3.4	Plane Wave Expansion Method	34
		3.4.1 1D Photonic Crystal	38
		3.4.2 2D Photonic Crystal	39
		3.4.2.1 2D Square Lattice	40
	2.5	3.4.2.2 2D Triangular Lattice	44
	3.5	Transfer Matrix Method	47

4	PHO	OTONIC CRYSTAL LOGIC GATES DESIGN METHODOLOGY	50
	4.1	The Photonic Crystal Band Structure	50
	4.2	The Photonic Crystal Gap Map	
		4.2.1 PhC Gap Map of 2D Square Lattice	
		4.2.2 PhC Gap Map of 2D Triangular Lattice	
5	IMI	PLEMENTATION AND SIMULATION RESULTS OF DIGITAL LOGIC	
	GA	ΓES	59
	5.1	OR Gate	63
	5.2	AND Gate	65
	5.3	XOR Gate	68
	5.4	NOT Gate	71
	5.5	NOR Gate	72
	5.6	NAND Gate	76
	5.7	XNOR Gate	79
6	CO	NCLUSION	82
Re	eferer	nces	84

List of Tables

1.1	Truth Table of the logic gates	6
2.1	Comparison of different techniques to build PhC logic gates	31
3.1	Summary of the relations that describe the propagation of electron and photons in a periodic structure	34
5.1	Truth table of the OR gate	65
5.2	Truth table of the AND gate	68
5.3	Truth table of the XOR gate	70
	Truth table of the NOT gate	
	Truth Table of the NOR Gate	
5.6	Truth table of the NAND gate	77
	Truth table of the XNOR gate	

List of Figures

1.1	dimension photonic crystals [8]	. 2
1.2	The band structure of square lattice photonic crystal (a) The pass and stop bands in the band structure (b) The corresponding 2D square lattice	
	photonic crystal	. 3
1.3	2D square lattice photonic crystal structure with a line defect	
1.4	The conventional logic gates symbols	
1.5	The schematic of the PhC integrated system	
1.6	The slab wafer of height h surrounded from the bottom by the substrate and from the top by the cladding	
2.1	(a) The 2D square lattice PhC structure consisting of dielectric rods in air background with input faces A and B and output faces Out_1 and Out_2 (b)	10
2.2	The directions in the lattice, similar to Fig. 2 in [35]	10
	$\phi_1 - \phi_2 = -\pi/2$ respectively, similar to Fig. 4 in [35]	11
2.3	The schematic of the AND, NAND, NOR and XNOR gates, similar to Fig. 2 in [36]	12
2.4	The schematic of the proposed XOR and AND logic gates based on MMI,	
2.5	similar to Fig. 1 in [41]	. 14
	B are the input ports, similar to Fig. 5 in [42]	15
2.6	The schematic of the XOR, XNOR, NAND and OR gates, where A and B	10
	are the input ports, similar to Fig. 7 in [43]	15
2.7	The schematic of the XNOR, XOR, OR and NAND gates, where A and B	1.0
20	are the input ports, similar to Fig. 8 in [44]	16
2.8	The schematic of all the gates, where A and B are the input ports, similar to Fig. 1 in [48]	17
2.9	The schematic of AND gate built with the NAND gates, where A and B	-,
	are the input ports, similar to Fig. 2 in [46]	18
2.10	The schematic of the proposed AND and XOR gates, where A and B are	
	the inputs, similar to Fig. 1 in [60]	19
2.11	The schematic of the OR gate, where A and B are the input ports, similar	
	to Fig. 3 in [61]	20
2.12	The schematic of the OR gate, where A and B are the input ports, similar to Fig. 2 in [52].	21
2.13	The schematic of the XOR gate, where A and B are the input ports, similar	
	to Fig. 1 in [14]	22
2.14	The schematic of the XNOR gate, where A and B are the input ports,	
	similar to Fig. 5 in $[53]$.	. 22

2.15	The schematic of AND and NOR gates, where A and B are the input ports, similar to Fig. 3 in [30]	23
2.16	The schematic of NOR, NAND and XNOR gates, where A and B are the	
0.17	input ports, similar to Fig. 4 in [54]	24
	The schematic of AND gate, where A and B are the input ports, similar to Fig. 1 in [55]	25
	The schematic of OR gate, where A and B are the input ports, similar to Fig. 2 in [56]	25
2.19	The schematic of the ring resonator using nonlinear materials, similar to Fig. 1 in [63]	26
2.20	The schematic of the AND gate based on nonlinear photonic crystal, where A and B are the input ports, similar to Fig. 3 in [63]	27
2.21	The schematic of the OR gate using ring resonator, where A and B are the input ports, similar to Fig. 7 in [64]	28
2.22	The schematic of the AND and NOT gate, where A and B are the input ports, similar to Fig. 2 and Fig. 4 in [65]	28
2.23	The schematic of the NAND gate, where A and B are the input ports, similar to Fig. 5 in [66]	29
3.1	The Cartesian vectors of the propagation in a general PhC structure	37
3.2	Photonic crystal structure of 1D periodicity	38
3.3	The band structure of 1D PhC of Si/Air layers obtained by (a) Our Matlab model (b) OptiWave simulator	39
3.4	(a) The 2D PhC square lattice (b) The first Brillouin zone of the lattices,	40
2.5	where the shaded area is the irreducible Brillouin zone.	40
3.5	The unit cell of the 2D PhC square lattice	41
3.6 3.7	The unit cell of the 2D PhC square lattice with dimensions The band structure of 2D square lattice PhC structure of Si rods in air background for the TE mode obtained by (a) Our Matlab model (b) OptiWave	42
	simulator	44
3.8	(a) The 2D PhC triangular lattice (b) The first Brillouin zone of the lattices,	
2.0	where the shaded area is the irreducible Brillouin zone.	44
3.9	The unit cell of 2D PhC triangular lattice	45
3.10	The band structure of 2D triangular lattice PhC structure of Si rods in air background for the TE mode obtained by (a) Our Matlab model (b)	
	OptiWave simulator	47
	Periodic structure of 1D PhC	47
3.12	General instance of the incident and reflected waves in the periodic structure of 1D PhC	48
4.1	An example of the photonic band structure of 2D square lattice of silicon	
4.2	rods in air background of ratio $r/a = 0.3$ with TE polarization An example of the gap map of 2D square lattice of silicon rods in air	50
4.3	background with two different PBG diagrams at two different r/a values. The gap map of 2D square lattice of silicon rods in air background with	51
1.5	TE mode	52

4.4	The parameters selection in the gap map of 2D square lattice of silicon	
	rods in air background with TE mode	53
4.5	The relation between band gap size, the optimal designed r/a ratio, and	
	the material dielectric contrast of 2D square lattice of dielectric rods in air	
	background with TE mode	54
4.6	The gap map of 2D square lattice of silicon rods in air background with	
	TM mode	55
4.7	The gap map of 2D square lattice of air holes in silicon background with	
	TE mode	55
4.8	The gap map of 2D square lattice of air holes in silicon background with	
	TM mode	56
4.9	The gap map of 2D triangular lattice of silicon rods in air background with	
	TE mode	56
4.10	The gap map of 2D triangular lattice of silicon rods in air background with	
	TM mode	57
4.11	The gap map of 2D triangular lattice of air holes in silicon background	
	with TE mode	57
4.12	The gap map of 2D triangular lattice of air holes in silicon background	
	with TM mode	58
4.13	The gap map of 2D triangular lattice of air holes in silicon background	
	with complete band gap (Hybrid mode)	58
5.1	The gap map of the proposed 2D square lattice PhC of dielectric rods in	
	air background logic gate for TE mode	60
5.2	The PBG of the proposed 2D square lattice PhC of Germanium rods in air	
	background logic gate for TE mode	61
5.3	The range of normalized power values at the output with the corresponding	
	logic	62
5.4	The response time of the logic gates	62
5.5	The proposed 2D OR gate, where A and B are the input ports	63
5.6	The simulated field distribution for the OR gate (a) A=0, B=1 (b) A=1,	
	$B=0 (c) A=1, B=1 \dots$	64
5.7	The response time of the OR gate	65
5.8	The proposed 2D AND gate, where A and B are the input ports	66
5.9	The simulated field distribution for the AND gate (a) A=0, B=1 (b) A=1,	
	B=0 (c) A=1, B=1	67
5.10	The response time of the AND gate	68
5.11	The proposed 2D XOR gate, where A and B are the input ports	69
5.12	The simulated field distribution for the XOR gate (a) A=0, B=1 (b) A=1,	
	B=0 (c) A=1, B=1	70
5.13	The response time of the XOR gate	71
5.14	The schematic of the proposed NOT gate	71
	The simulated field distribution for the NOT gate (a) In=0 (b) In=1	72
	The schematic of the proposed NOR gate	73
	The proposed 2D NOR gate, where A and B are the input ports, and Ref	
	is the input reference signal	73
5 10	The response time of the NOR gate	7/

5.19	The simulated field distribution for the NOR gate (a) A=0, B=0 (b) A=0,	
	B=1 (c) A=1, B=0 (d) A=1, B=1	75
5.20	The schematic of the proposed NAND gate	76
5.21	The proposed 2D NAND gate, where A and B are the input ports, and Ref	
	is the input reference signal	76
5.22	The response time of the NAND gate	77
5.23	The simulated field distribution for the NAND gate (a) A=0, B=0 (b) A=0,	
	B=1 (c) A=1, B=0 (d) A=1, B=1	78
5.24	The proposed 2D XNOR gate, where A and B are the input ports, and Ref	
	is the input reference signal	79
5.25	The response time of the XNOR gate	80
5.26	The simulated field distribution for the XNOR gate (a) A=0, B=0 (b) A=0,	
	B=1 (c) A=1, B=0 (d) A=1, B=1	81

List of Symbols and Abbreviations

Symbols

λ	Wave length
λ_o	Wave length in vacuum
f	Frequency
T	Periodic time
ω	Angular frequency
Ω	Normalized frequency
K	Wave vector
ϵ_o	Permittivity of free space
ϵ_r	Relative permittivity
μ_o	Permeability of free space
μ_r	Relative permeability
c	Speed of light in vacuum
n	Refractive index
а	Lattice constant
R	Crystal lattice vector
G	Reciprocal lattice vector
E	Electric field vector
Н	Magnetic field vector
D	Electric displacement field vecto
В	Magnetic flux density vector
ho	Electric charge density
J	Electric current density vector
T	Transmittance
R	Reflectance
٨	Absorbones

Abbreviations

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

CW ClockWise

CCW Counter ClockWise

FDTD Finite-Difference Time-Domain

Ge Germanium

IBZ Irreducible Brillouin Zone

MMI Multi-Mode Interference

PBG Photonic Band Gap

PCF Potonic Crystal Fiber

PhC Photonic Crystal

PWE Plane wave expansion

PML Perfectly Matched Layer

Si Silicon

TE Transverse Electric

TIR Total Internal Reflection

TM Transverse Magnetic

TMM Transfer Matrix Method