DESIGN OF INTERFERENCE-BASED ALL OPTICAL
PHOTONIC CRYSTAL LOGIC GATES

By

Hussein Mohamed El-Sayed Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017



DESIGN OF INTERFERENCE-BASED ALL OPTICAL
PHOTONIC CRYSTAL LOGIC GATES

By

Hussein Mohamed El-Sayed Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

Under the Supervision of

Prof. Nadia Hussein Rafat Dr. Tamer Ashour Ali

Engineering Mathematics and Physics Department  Engineering Mathematics and Physics Department

Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017



DESIGN OF INTERFERENCE-BASED ALL OPTICAL
PHOTONIC CRYSTAL LOGIC GATES

By

Hussein Mohamed El-Sayed Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

Approved by the Examining Committee:

Prof. Nadia Hussein Rafat Thesis Main Advisor
Prof. Mohamed Hesham Farouk Internal Examiner
Prof. Amr Mohamed Ali Shaarawi External Examiner

School of Sciences and Engineering, American University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017



Engineer’s Name: Hussein Mohamed El-Sayed Hussein

Date of Birth: 24/02/1992

Nationality: Egyptian

E-mail: hessiun_mohamed @cu.edu.eg

Phone: +201008868164

Address: Engineering Mathematics and Physics

Department, Cairo University, Giza 12613
Registration Date: 1/10/2014

Awarding Date: v o 12017

Degree: Master of Science

Department: Engineering Mathematics and Physics
Supervisors:

Prof. Nadia Hussein Rafat
Dr. Tamer Ashour Ali

Examiners:
Prof. Nadia Hussein Rafat (Thesis Main Advisor)
Prof. Mohamed Hesham Farouk (Internal Examiner)
Prof. Amr Mohamed Ali Shaarawi (External Examiner)
(School of Sciences and Engineering,
American University in Cairo)
Title of Thesis:

Design of Interference-Based All Optical Photonic Crystal Logic Gates

Key Words:
Photonic Band Gap; Plane Wave Expansion; Finite-Difference Time-Domain;
Optical Interference; Logic Gates

Summary:

A novel design of all-optical logic gates is proposed using the 2D square
lattice PhC structure built with dielectric rods surrounded by air. The theory
of operation to realize the logic gates functionality is based on the optical
interference phenomenon, where logic 1’ corresponds to a constructive in-
terference, while the logic *0’ corresponds to a destructive interference. The
proposed logic gates have compact size and exhibit wide range of operating
wavelengths between 1266.9 nm and 1996 nm with center operating wave-
length 1550 nm to fulfill various requirements of different applications. We
used The PWE and FDTD mathematical methods to analyze the signal’s
behavior inside the PhC and to calculate the PBG. The calculated maximum
contrast ratio in dB for AND, XOR, NOR, NAND and XNOR is found to
have values of 6.02, 12.155, 9.02, 8.58 and 9.59, respectively.
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