EVALUATION OF THE ROLE OF PROPELLER FLAP IN RECONSTRUCTION OF LOWER THIRD LEG AND FOOT DEFECTS

By

Ibrahim Mohamed Ibrahim Elgarya

M.B.B.ch, M.Sc. General Surgery

Faculty of Medicine, Alexandria University

A thesis

Submitted for Partial Fulfillment of **M.D**Degree in plastic surgery

Under Supervision of:

Prof. Dr. Khaled Makeen EL-Refaie

Professor of plastic surgery

Faculty of Medicine - Cairo University

Prof. Dr. Ahmed Mohamed Sobhi

Professor of plastic surgery

Faculty of Medicine - Cairo University

Dr. Ahmed Mohamed Kenawy
Assistant Professor of plastic surgery
Faculty of Medicine - Cairo University
Dr. Hamed Mohamed Kadry
Lecturer of plastic surgery
Faculty of Medicine - Cairo University

Cairo University 2016

ACKNOWLEDGMENT

First and foremost, I feel always indebted to God, the kind and merciful. I would like to thank all my professors and supervisors,

I am greatly honored to express my deep respect and gratitude to **Prof. Dr. Khaled Makeen EL-Refaie,** the eminent Professor of Plastic Surgery, Cairo University, for his faithful supervision, understanding, help and encouragement in initiating and completing this work.

I am much obliged to **Prof. Dr. Ahmed Mohamed Sobhi,** Professor of plastic Surgery, Cairo University, for his continuous guidance and valuable advises throughout this work.

I would like to deeply thank **Dr. Ahmed Mohamed kenawy**, for his continuous help and endless encouragement in completion of this work.

I am much grateful to **Dr. Hamed Mohamed Kadry,**Lecturer of General and Plastic Surgery, Cairo University, for his great help and support throughout all steps of this work.

Last but not least, **To my family**, you are my help and moral support.

Thank you

ABSTRACT

Background Coverage of soft tissue defects over the lower third of the leg still a difficult challenge to reconstructive surgeons. Local propeller flaps based on perforator vessels are a good addition to reconstructive surgery of the limbs. These flaps allow efficient coverage of small to medium wounds without the need to sacrifice a major vessel. No need for microvascular anastomosis and allows to replace like with like, the donor site can be partially or in some cases totally closed by the short limb of the flap. The aim of this study was to evaluate the role of propeller flaps in reconstruction of lower third leg and foot defects, and to propose an algorithm for this reconstruction.

Materials and Methods In the current study 30cases of various lower third leg and foot defects were covered by perforator based propeller flaps. Defects were due to Trauma in 21 cases, gunshot injuries in 2 cases, electric burn in 1 case, 4 case of a chronic non healing ulcer and 2 cases with post burn scars. Handheld doppler was used to determine the perforators site.

Results 19 cases healed completely with smooth postoperative course. five cases showed total flap necrosis, 2 cases showed marginal necrosis of the flap, and 2 cases showed partial loss of the dermis and 2 cases showed transient venous congestion. In most cases, the aesthetic result was optimal and patients were fully satisfied.

Conclusion The use of perforator based propeller flaps to cover defects in the lower third leg and foot showed satisfactory results as regards flap viability and providing a suitable cover of various defects. The use of hand held Doppler proved satisfactory in pre operative delineation of the perforators.

Keywords: Lower third - leg defects- foot defects - hand held Doppler-Propeller flap- reconstruction

LIST OF CONTENTS

Cha	pter Page		
ACKNOWLEDGMENTi			
LIST	LIST OF CONTENTSii		
LIST	LIST OF TABLESiv		
LIST	OF FIGURESiv		
LIST	OF ABBREVIATIONSx		
I.	INTRODUCTION1		
II.	AIM OF THE WORK5		
III.	REVIEW OF LITERATURE6		
	Anatomy of the leg6		
	Aetiology of skin defects in lower leg and foot		
	Blood supply of the leg25		
	Perforators of the lower limb32		
	Angiosomes41		
	Prefrosome Concept49		
	Preoperative assessment of perforators54		
	Perforator Flap61		
	Perforator Plus Flap68		
	Propeller Flaps72		
IV.	PATIENTS AND METHODS79		

V.	RESULTS	90
	Case series	103
VI.	DISCUSSION	135
VII.	CONCLUSIONS	149
VIII.	SUMMARY	150
IX.	REFERENCES	151
	ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1.	Compartments of the leg.	10
2.	Cause of injury.	91
3.	Survey of 30 propeller flaps for reconstruction of leg and foot defects.	92
4.	Flaps based on PTA. Perforators.	95
5.	Flaps based on ATA. Perforators.	98
6.	Flaps based on PA. Perforators.	100

LIST OF FIGURES

Fig		Page
1.	Types of perforator flaps	3
2.	Cross section in the middle third of the leg.	10
3.	Muscles of the anterior compartment of the leg.	11
4.	Muscles of the back of the leg.	12
5.	Classification of open tibial fracture	19
6.	Showing arterial supply of the leg	27
7.	Venous drainage of the leg.	29
8.	Blood supply of the skin.	30
9.	Vascular arterial anatomy of the perforator.	34
10.	Graph of perforators from the anterior tibial artery	36
11.	Anterior tabial artery perforators	37
12.	Graph of perforators from the peroneal artery	38
13.	Dissection of the posterior tibial artery perforators and their venae comitantes	40
14.	Graphof perforators from the posterior tibial artery	40
15.	Vascular territories of the skin are delineated according to the source vessel of the perforator	44
16.	Angiosomes of the foot	45
17.	Angiosomes of anterior aspect of the leg	47
18.	Angiosomes of posterior aspect of the leg	48
19.	Perforators have a distinct arterial and venous vascular territory	50
20.	Interperforator flow occurs by means of direct and indirect linking vessels	51
21.	CT angiography scan of leg perforators	63
22.	Direction of perforator flow between articulations	53
23.	Common perforasomes of the body demonstrating axis and direction of flow based on location	53

Fig		Page
24.	Handheld Doppler devices	55
25.	Identification of perforators using handheld Doppler	55
26.	Multidetector-row computed tomography for detection of the perforators	60
27.	A posterior tibial artery perforator propeller flap	60
28.	Patterns of blood supply to the skin	62
29.	The perforator-plus concept	69
30.	Presence of a perforator allows giving a back cut without fear of vascular compromise both in rotation	70
31.	perforator plus flap	71
32.	Demonstration of a basic propeller flap	73
33.	Propeller flap design	74
34.	The propeller flap concept	76
35.	Hand held Doppler.	82
36.	Identification of the perforator site by hand held Doppler.	83
37.	Dissection of the perforators	84
38.	Elevation of the flap in propeller design	86
39.	Propeller flap after rotation 90°	86
40.	Distribution of cases according to gender	90
41.	Propeller flap according to source vessel	90
42.	Classification of flaps according to arc of rotation	94
43.	Relation between arc of rotation and complications	94
44.	Sites of defects covered with post.tibial artery perforator propeller flaps	96
45.	Complications of posterior tibial artery perforator propeller flap.	97
46.	Anterior tibial artery perforator propeller flaps regarding complications	99
47.	Sites of defects covered with peroneal artery perforator propeller flaps	102

Fig		Page
48.	Complicated peroneal artery perforator propeller flaps	102
Case 11		
49.	Exposed lower third tibia with defect (5x6 cm).	104
50.	Identification of the two PTA perforators.	104
51.	The distal perforator identified.	105
52.	Propeller flap based on the distal perforator.	105
53.	Flap after insitting on the defect.	106
54.	Propeller flap rotated 90 degree and donor site closure by SSG.	106
Case 12		
55.	Exposed plate at Lt. Leg and skin necrosis at right leg.	108
56.	PTA perforator was identified 7 cm above medial malleolus.	108
57.	The flap islanded on the PTA perforator.	109
58.	Propeller flap rotated 90 to cover the exposed plate.	109
59.	The flap examination through the dressing window on the 2 nd day.	110
60.	The propeller flap on the Lt. leg and its donor site closed with SSG.B: Transposition flap on the Rt. leg and its donor site closed with SSG.	110
Case 2		
61.	Skin loss lower third leg and foot post RTA.	112
62.	Flap design and perforators marks by doppeler.	112
63.	Posterior tabial perforators identified.	113
64.	Complete flap islandization on the distal posterior tabial perforator.	113
65.	Rotation of the flap to cover the defect on the foot and ankle.	114
66.	Third post-operative day,the distal half of the flap looks congested.	114
67.	6 th . post-operative day.	115
68.	Four months post skin flap.	115

Fig		Page
Case 23		
69.	Preoperative view of the chronic ulcer over tendo-achillis	117
70.	Propeller flap based on post.tabial perforator.	117
71.	Flap after insitting over the tendo-achillis.	117
Case 29		
72.	Exposed lower third tibia-post traumatic.	119
73.	Propeller flap elevation.	119
74.	Complete islandization of the flap.	120
75.	Insitting of the flap after 180 rotation.	120
Case 4		
76.	Identification of the propeller perforators using doppeler ultrasound.	122
77.	Elevation of the flap.	122
78.	Identification of the distal peroneal perforator with completely islanded flap.	123
79.	Flap rotation to cover the defect.	123
80.	Flap insitting and donner site grafting	124
81.	Flap one week postoperative.	124
Case 7		
82.	Preoperative view of the ulcers.	125
83.	Flap design and perforators marking by doppeler.	126
84.	Flap design and dissection.	126
85.	Flap rotation to cover the defects.	127
86.	Flap after rotation over the defect and skin grafting of the donor site.	127
Case 30		
87.	Flap elevation based on distal peroneal perforator.	129
88.	Complete islandization of the flap.	129
89.	Insitting of the flap over the defect.	130
90.	Immediate post-operative view of the flap.	130

Fig		Page
Case 14		
91.	Preoperative view of the foot.	132
92.	Marking of the perforator by Doppler.	132
93.	Identification of the perforator.	132
94.	Identification of the perforator.	133
95.	The flap after dissection of the perforator and complete islandization.	133
96.	Flap insitting over the defect and sin grafting for deep friction areas.	133
97.	Severe venous congestion.	134
98.	Six month post skin graft	134

LIST OF ABBREVIATIONS

ATA : Anterior tabial artery

ATAP : Anterior tibial artery perforator

BP : Blood pressure

CT : Computer tomography

DIEP: Deep inferior epigastric perforator

DM : Diabetus milletus

DP : Dorsalispedis

HTN: Hypertension

I C : Integument closed

IO : Integument open

Lt. : Left.

MHz : Mega hertz

OR : Operating room

PA : Peroneal artery

PAP : Peroneal artery perforator

PTA : Posterior tabial artery

PTAP : Posterior tibial artery perforator

Rt. : Right.

RTA : Road traffic accident.

SSG : Split skin graft.

INTRODUCTION

Leg soft tissue defects with bone or tendon exposure need to be covered with a flap. Various local and free flaps with more or less consistent donor site defects have been described in the past.(Lu et al.,2011)

Due to the paucity of local tissue in lower limb, upper limb, head and neck region, plastic surgeons are often challenged with the difficult task of providing stable coverage for these defects. Microsurgical tissue transfer offers the solution for these problems but in developing countries the availability of microsurgical equipments, surgeons with required competence and training still restricts utility of free flaps in most regions of the world. The distal third of the lower extremity remains a challenging area in regard to soft tissue coverage. Due to thin, non-expandable soft tissue and predisposition for massive oedema formation, even small defects may become problematic wounds with exposed bone, tendon or other neurovascular structures. This area has traditionally been addressed with free flaps, as local, random pattern flaps showed high failure rate. Muscle flaps are associated with a loss of function, as well as inadequate reach in the distal aspect of the lower extremity. (Geddes &Neligan, 2003)

After the introduction of the perforator-based flap concept, new flaps have also been described for the leg. An evolution and simplification of the perforator flap concepttogetherwith the 'free style' flap harvesting method, are the propeller flaps, i.e. local flaps, based on a perforator vessel, which becomes the pivot point for the skin island that can therefore be rotated up to 180 degrees. Perforator flaps represent the latest descendant in a line of evolution that began with the random pattern flap. (Geddes &Neligan, 2003)

The early random pattern flaps were constrained by rigorous length-to-width ratios to ensure viability, until 1970 when Milton revealed that their survival was dependent on the inclusion of a pedicle containing a large vessel.(Milton,1970)

The axial pattern flap concept was introduced by McGregor and Jackson in 1972 in their description of the groin flap, and was the anatomical basis for the deltopectoral flap described by Bakamjian.(McGregor & Morgan, 1973)

In the 1970s, the works of Manchot were discovered and translated, revealing that many axial flaps were based on vessels that he had already described. (Manchot,1983)

Musculocutaneous flaps that were introduced by Orticochea rapidly became popular because of their reliability and wide arcs of rotation.(Orticochea M.1972).

In 1981, Ponte'n reported that greater length-to-width ratios could beachieved in flaps from the lower leg if the deep fascia was included.(**Ponte'n,1981**)

The anatomical basis for these fasciocutaneous flaps was later described by Haertsch, Barclay et al., and Cormack and Lamberty.(Cormack&Lamberty,1984).

Taylor and Palmer published their work defining the vascular territories of source arteries, which they termed angiosomes. Knowledge of these vascular territorieshas proven valuable in flap design.(Taylor&Palmer,1987)

The perforator flap era began in 1989, when Koshima and Soeda described an inferior epigastric artery skin flap without rectus abdominis muscle forreconstructionoffloor of the mouth and groin defects, noting that a large flap without muscle could survive on a single muscle perforator.(Koshim&Soeda,1989)

Kroll and Rosenfield suggested that perforator flaps combine the reliable blood supply of musculocutaneous flaps with the reduced donor-site morbidity of a skin flap. The reduced donor-site morbidity often leads to fasterrecovery and reduced postoperative pain. Perforator flaps have the additional advantages that they can be tailored to accurately reconstruct the defect. Including flap Thinning for resurfacing shallow defects, there is freedom of orientation of the pedicle, and a longer pedicle is harvested than with the parent musculocutaneous flap. (Kroll&Rosenfield,1988)

There is hyperperfusion of the skin paddle, which may allow the capture of the adjacent two angiosomes, explaining how a single perforator can capture such large territories.(Rubino&Coscia,2006)

Over the past few years, the use of propeller flaps has becomeincreasinglypopular. A propeller flap can be defined as an "island flap that reaches the recipient site through an axial rotation" the classification is based on the nourishing pedicle (subcutaneous pedicled propeller flap, perforator pedicled propeller flap, supercharged propeller flap), the degree of skin island rotation (90-180 degree) and when possible, the artery of origin of the perforator. (**Luet al.,2011**)

The propeller flap is a useful reconstructive tool and is able to give good cosmetic and functional results in different parts of the body.

The propeller flap is comparable to alocal flap in terms of amount and firmness of subcutaneous tissue, skin texture, and the possibility of