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Effect of hemodialysis membrane pore size on
homocysteine level in children with chronic renal

failure.

Abstract

Hyperhomocysteinemia is a putative risk factdor
cardiovascular disease in the hemodialpsipulation. Modifications
of the dialysis regimen may result anbetter removal of Hcy. We
examined the effect of dialyzearembrane pore size on Hcy levels in
pediatrichemodialysis patientd'he study included twenty patients
with ESRD on regular hemodialysis with the mean &g8D) of
11+2.56 years. Plasma Hcy before and afliatysis were measured
both on low-flux dialysis and 12 weeks after coi@n to high-flux
membranes. Despite the absence of significant tdhucin
predialysis homocysteine levels , high-flux diatysvas associated
with improvement in important cardiovascular riglctors including
anemia , hypertension and hyperphosphatemia.

Key words: Chronic renal failure ; cardiovascular risk ; digdy
membrane; hemodialysis; high-flux; Homocysteinew-flux.
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Introduction and aim of the work

Introduction

End-stage renal disease (ESRD) is defiseithe phase when the
patient's renal dysfunction has progressed to theatpat which
homeostasis and ultimately survival cannot be swestiawith native renal
function, and either dialysis or renal transplaotais requiredVogt and
Avner, 2007).

Cardiovascular disease (CVD) is highly prevalenend stage
renal disease population and is the predominardecatideati{David et
al., 2005). Throughout the last decade, it was realized tmamajor killer
in chronic dialysis patients was not uremia petbse CVD. A cardiac
cause accounted for almost half of all causes athdand the rate of
death was approximately 10 to 20 times higher tharthe general
population(Parekh et al., 2002). Unfortunately, children with ESRD share

many risk factors for CVD The combination of these risk factors
including elevated homocysteine might be the redsothe development
and acceleration of cardiac disease in pediatriR[ES$Mark, 2002).
Several studies demonstrate a graded and indeperad=mociation
between Homocysteine and cardiovasculsk (Wald et al., 2002 and
Klerk et al., 2002).

Homocysteine (Hcy) is a sulfur-containingiamacid produced
in the metabolism of the essential amino acid no@ihe by methylation
reactions involving the active form of methioniseadenosyl methionine
(Hankey & Eikelboom, 1999). Most of the early work on the causes of
hyperhomocysteinemia focused on nutritional or genéactors or
impaired homocysteine removal by renal disg¢gd@ub et al., 2000).

The totality of evidence from epidefogic observations
suggests an independent relationship between hatecg and
atherothrombotic vascular risk. It is quite plalssithat the relationship
between hyperhomocysteinemia and CVD is indireatl, ia confounded
by other factors (e.g., deficiencies of folateamin B12, or vitamin B6
and renal insufficiency) that influence both honsieyne levels and
cardiovascular riskSanjay et al., 2006).
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Aim of work

The aim of this study is to:

Compare the effect of dialysis with both léhwx and highflux
membranes on homocysteine level and its dialytiooseal in pediatric
patients with ESRD on regular hemodialysis.
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Chapter 1
Renal Failure

The term "renal failure" means failure of renal retary function
owing to depression of glomemlar filtration rate={5 (Andreoli, 1999).
Acute Renal Failure (ARF):

Introduction

Acute renal failure denotes the abrupt brmderenal dysfunction
leading to the inability to regulate acid-base afettrolyte balance and
to excrete wastes and fluid. Increased understgndof the
pathophysiology and clinical spectrum of acute réaidure has led to a
change in nomenclature of this condition to acutkdy injury (AKI),
acknowledging that acute renal dysfunction occuug do injurious
endogenous or exogenous disease proc@dsesmel & Goldstein, 2008).
Epidemiology

The epidemiologic importance of AKI as a public ltiegroblem
Is underscored by evidence showing that even al smdiliction (0.3
mg/dL serum creatinine increase) in the renal foncbf hospitalized
adult and pediatric patients is a risk factor foorimdity and mortality
(Priceetal., 2007).

Although little data exist to describe the incidenof pediatric
AKIl, the prevalence of hospital and pediatric ICt&aired AKI appears
to be increasing, which may result from changesliagnostic profiles
over the last 10-20 years and increasing use ofe mavasive
management to support critically ill children angher iliness severity of
these patient®/achvanichsanong et al., 2006).

When requirement for some form of rengblaeement therapy
(RRT) as the strictest definition of AKI is uset$ incidence in the PICU
ranges from 1-2%Bailey et al., 2007).

In 2004, a consensus definition for AKdsyproposed by the Acute
Dialysis Quality Initiative: the RIFLE criteria @k, injury, failure, loss,
end-stage renal disease). The adult-derived RIFldinilon was
modified, and then applied and validated in peghafratients and
renamed as the pediatric RIFLE (pRIFLE) criteriRIFLE stratifies AKI
from mild (R,risk) to severe (Hailure) (Table 1)(Bellomo et al., 2004 ).
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Table 1Pediatric RIFLE criteria definition of acute kidney injury

Pediatric RIFLE criteria

Estimated CrCI (eCCl)* Urine output
Risk eCrCl decrease by 25% <0.5ml/ kg/h for 8h
Injury eCrCl decrease by 50% <0.5mL/ kg/ h for 16 h
Failure eCrCl decrease by 75% <0.3mL/ kg/ h for 24 h
or eCrCl <35mL/ min/1.73 m Or anuric for 12 h
Loss Persistent failure >4 weeks.

Endstage End stage renal disease.
(persistent failure >3 months

 Estimated creatinine clearance calculation isutised later.
(Bellomo et al., 2004)
Etiology and Pathophysiology of AKI
A recent pediatric retrospective study reveated the most common

causes of AKI in a tertiary health care center wepal ischemia,
nephrotoxic medication use, and sefp$is-Stickle et al., 2005). Each of
these conditions cause AKI via different mechani3imsy lead to a final
common pathway of acute tubular necrosis (ATN)rati@rized by renal
tubular epithelial cell death. Table 2 lists comnoamises of AKI.

I. Prerenal AKI

Prerenal AKI refers to the abrupt decrease in GélRwing renal
hypoperfusion, as shown in tabléNichael & Goldstein, 2008).

In the setting of this decreased renal @gofuy several adaptive
responses come into play, aiming at maintaining GIfd restoring
intravascular volume via neurohormonal mechanisDecreased renal
perfusion leads to increase in adrenergic actiaitg stimulation of the
renin—angiotensin—aldosterone (RAA) axis and amtétic hormone
(ADH) release(Devarajan, 2005). The increase in adrenergic activity
leads to systemic vasoconstriction, thereby inangablood pressure.
Stimulation of the RAA system leads to reabsorptdrsalt and water.
Increase in systemic ADH leads to retention of waie the collecting
tubule. Each of these mechanisms favors the mantenof intravascular
volume and systemic blood pressure and thus nmaingaGFR(Lameire
et al., 2005).



