Effect of hemodialysis membrane pore size on homocysteine level in children with chronic renal failure.

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By
Radwa Ibrahim Hassan Ali
(M.B.B.Ch.)

Supervised By

prof. Dr. Fatina Ibrahim Fadel
Prof. of Pediatrics
Faculty of Medicine
Cairo University

Dr. Hafez Mahmoud Bazaraa
Assist. Prof. of Pediatrics
Faculty of Medicine-Cairo University

Dr. Hala Yousef Ibrahim Assist. Prof. of Pediatrics National Research Center

Faculty of Medicine Cairo University 2009 مسم الله الرحمن الرحبيم علال تعلم وكان فضل الله عليك عظيما مدق الله العظيم

Acknowledgment

First and foremost thanks to "**Allah**" the most merciful to whom I relate any success in achieving any work in my life.

I would like to express my sincerest gratitude and appreciation to Professor Dr. **Fatina Ibrahim Fadel**, Professor of Pediatrics, Cairo University, for her unlimited support, keen supervision, and continuous guidance throughout the preparation of this study.

I am greatly indebted to assistant Professor Dr. **Hafez Mahmoud Bazaraa**, assistant professor of Pediatrics, Cairo University. His enthusiasm and honest assistance made the achievement of this work possible.

No words can describe the enormous efforts and generous help of assistant professor Dr. Hala Yousef Ibrahim, National Research Centre, for her sincere effort, valuable remarks, and constant support which have contributed a lot to the delivery of this work.

I would like to express my deep appreciation and warm thanks to the researcher Dr. **Sonia Adolf Habib**, National Research Centre for her valuable support and help.

I am also deeply grateful to assistant Prof. Dr. Maha Alwaseef, Assistant Prof. of biochemistery, National Research Centre for her great help, support and continuous contribution.

My lovely thanks and gratitude to **my parents** who were always behind any success in my life

Effect of hemodialysis membrane pore size on homocysteine level in children with chronic renal failure.

Abstract

Hyperhomocysteinemia putative is a risk factor cardiovascular disease in the hemodialysis population. Modifications of the dialysis regimen may result in a better removal of Hcy. We examined the effect of dialyzer membrane pore size on Hcy levels in pediatric hemodialysis patients. The study included twenty patients with ESRD on regular hemodialysis with the mean age (±SD) of 11±2.56 years. Plasma Hcy before and after dialysis were measured both on low-flux dialysis and 12 weeks after conversion to high-flux Despite the absence of significant reduction in membranes. predialysis homocysteine levels, high-flux dialysis was associated with improvement in important cardiovascular risk factors including anemia, hypertension and hyperphosphatemia.

Key words: Chronic renal failure; cardiovascular risk; dialyzer membrane; hemodialysis; high-flux; Homocysteine; low-flux.

Contents

List of abbreviations	1
List of tables	1
List of figures	1
Introduction and aim of the work	1
Review of literature	
Chapter 1: Renal Failure	3
Chapter 2: Hemodialysis	33
Chapter 3:Homocysteine	50
Patients and methods	62
Results	66
Discussion	79
Conclusion and recommendations	86
Summary	88
References	90
Arabic summary	112

List of abbreviations

ABD Adynamic bone disease

ACE Angiotensin Converting Enzyme

ADH Antidiuretic hormone

ADMA Asymmetric dimethylarginine
ADP Adenosine diphosphate
AKI Acute kidney injury
ALP Alkaline phosphatase

anti-GBM Anti-glomerular basement membrane

ATN Acute tubular necrosis
AVF Arteriovenous fistula
AVG Arteriovenous graft

BHMT Betaine homocysteine methyltransferase

BMI Body mass index BW Body weight

CAD Coronary artery disease

cAMP Cyclic adenosine monophosohate

CBSCystathionine β-synthaseCGLCystathionine γ -lyase

cGMP Cyclic guanosine monophosphate\

Chronic kidney disease **CKD** Cytomegalovirus **CMV** Chronic renal failure **CRF** Chronic renal insufficiency CRI $C_{\rm UF}$ Ultrafiltration coefficient Cardiovascular disease **CVD DMG** Dimethlyglycine **EBV** Epstein-Barr virus

eCrCl Estimated creatinine clearance eNOS Endothelial nitric oxide synthase

ESRD End-stage renal disease
GFR Glomerular filtration rate

HcyHomocysteineHDHemodialysis

HUS Hemolytic uremic syndrome **IGF-1** Insulin like growth factor 1

IGFBP Insulin like growth factor binding protein

IHD Ischemic heart diseaseIVC Inferior vena cavaLDL Low-density lipoprotein

MAT methionine adenosyltransferase

MBGN Membranoproliferative glomerulonephritis

MBP Mean blood pressure in mmHg

MeTHFMethyltetrahydrofolateMSMethionine synthaseMTMethyltransferase

MTHFR Methylenetetra-hydrofolate reductase

NKF-K/DOQI National Kidney Foundation's- Kidney Disease Outcomes Quality

Initiative

PD Peritoneal dialysis

PDUR Postdialytic urea rebound

PGE2 Prostaglandin E2 PGI2 Prostacyclin

PTFE Polytetrafluoroethylene PTH Parathyroid hormone

RAA Renin–angiotensin–aldosterone axis

RBC Red blood cell

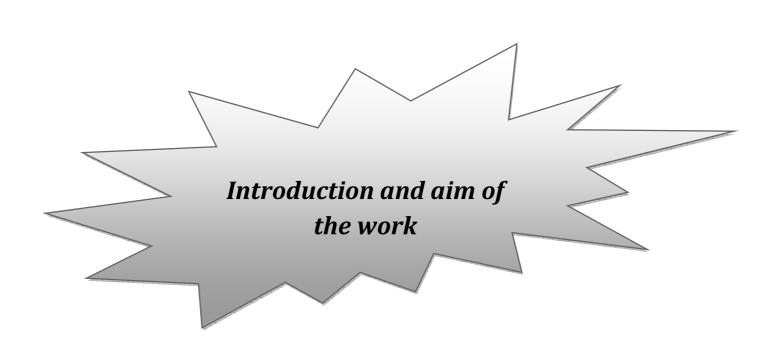
RDA Recommended dietary allowance
rhGH Recombinant human growth hormone
rHuEPO Recombinant human erythropoietin

ROS
Reactive oxygen species
RRT
Renal replacement therapy
SAH
S-adenosylhomocysteine
SAM
S-adenosylmethionine

SER Serine

THF Tetrahydrofolate
TXA2 Thromboxan A2
UF Ultrafiltration

UKM Urea kinetic modeling


VDRL Venereal Disease Research Laboratory

List of tables

Table(1):Pediatric RIFLE criteria definition of acute kidney injury	4
Table(2): Causes of pediatric acute kidney injury in the intensive care unit	6
Table(3): Common nephrotoxic medications	7
Table(4): Overview of the general concepts of managing acute kidney injury	10
Table(5): Criteria for the Definition of CKD	12
Table(6): Classifications of stages of chronic kidney disease	12
Table(7): Disorders that increase the risk of CKD	13
Table(8): Pathophysiology and manifestations of CRF	15
Table(9): Clinical alteration and manifestations of CRF	16
Table(10): Summary of merits and complications of rHu-Epo	18
Table(11): Possible factors involved in the pathogenesis of uremic bleeding	19
Table(12): Renal problems associated with chronic hypertension in children	23
Table(13): Antihypertensive Drugs for Ambulatory Treatment	25
Table(14): Medications for pediatric hypertensive emergency	26
Table(15): Estimation of GFR in Children Using Serum Creatinine and Height	29
Table(16): US recommended dietary protein for children on maintenance dialysis	32
Table(17): Conditions that may argue for relatively early initiation of dialysis	35
Table(18): Composition of a standard hemodialysis solution	39
Table(19): Strategy to help prevent hypotension during hemodialysis	45
Table(20): Causes of hyperhomocysteinemia	54
Table(21):Sex distribution among the study group	66
Table (22): Age of patients and duration of dialysis	66
Table (23): Anthropometric measurements of the study group	66
Table (24):Original renal disease in the study group	67
Table (25): Frequency of co-morbid conditions	68
Table (26):Distribution of filter sizes in the study group	68
Table (27):Duration of dialysis session in hours	68
Table(28): Blood flow per dialysis session and erythropoietin therapy	69
Table (29):Blood pressure values on high-flux and low-flux dialysis	69
Table (30): The frequency of patients receiving antihypertensive drugs	70
Table (31): Distribution of antihypertensive drugs	70
Table (32):Iron status during study period	70
Table(33):Comparison between low-flux and high-flux dialyzers influence on Kt/V and	71
routine lab investigations	70
Table (34): Homocysteine levels in the study group	72
Table (35): Homocysteine corrected for Kt/V on low-flux and high-flux dialysis	73
Table (36): Echo cardiographic parameters in the study group	74
Table (37): Correlation between homocysteine and other patients' parameters	74
Table (38): Correlation between different homocysteine levels	77

List of figures

Figure(1): hemodialysis circuit	36
Figure(2): Species of homocysteine in plasma	50
Figure(3): Outline of methionine metabolism	52
Figure(4): Postulated adverse vascular effects of homocysteine	58
Figure(5): sex distribution among study group	66
Figure(6): percent of median for weight and height	67
Figure(7): distribution of original renal disease in study group	67
Figure(8): comparison between low-flux and high-flux regarding blood pressure	69
Figure(9): comparison between low-flux and high-flux regarding creatinine reduction and phosphorus reduction	72
Figure(10): comparison between low-flux and high-flux dialyzers regarding hematocrit level	72
Figure(11): dialytic reduction of homocysteine on low-flux and high-flux dialysis	73
Figure(12): distribution of hyperhomocysteinemia on low flux	73
Figure(13): distribution of hyperhomocysteinemia on high-flux	74
Figure(14): Correlation between homocysteine on low flux and CaP of patients	75
included in the study	13
Figure(15): Correlation between homocysteine on low flux and creatinine of patients	
included in the study	76
Figure(16): Correlation between homocysteine on high flux and P of patients	
included in the study	76
Figure(17): Correlation between homocysteine before dialysis on low- and high- flux	
of patients included in the study	77
Figure(18): Correlation between homocysteine before dialysis on low flux and	78
homocysteine reduction of patients included in the study	70
Figure(19): Correlation between homocysteine on low and high-flux after dialysis	78
of patients included in the study	70

Introduction and aim of the work

Introduction

End-stage renal disease (ESRD) is defined as the phase when the patient's renal dysfunction has progressed to the point at which homeostasis and ultimately survival cannot be sustained with native renal function, and either dialysis or renal transplantation is required (*Vogt and Avner*, 2007).

Cardiovascular disease (CVD) is highly prevalent in end stage renal disease population and is the predominant cause of death (*David et al.*, 2005). Throughout the last decade, it was realized that the major killer in chronic dialysis patients was not uremia per se but CVD. A cardiac cause accounted for almost half of all causes of death and the rate of death was approximately 10 to 20 times higher than in the general population (*Parekh et al.*, 2002). Unfortunately, children with ESRD share many risk factors for CVD. The combination of these risk factors including elevated homocysteine might be the reason for the development and acceleration of cardiac disease in pediatric ESRD (*Mark*, 2002). Several studies demonstrate a graded and independent association between Homocysteine and cardiovascular risk (*Wald et al.*, 2002 and *Klerk et al.*, 2002).

Homocysteine (Hcy) is a sulfur-containing amino acid produced in the metabolism of the essential amino acid methionine by methylation reactions involving the active form of methionine, s-adenosyl methionine (*Hankey & Eikelboom, 1999*). Most of the early work on the causes of hyperhomocysteinemia focused on nutritional or genetic factors or impaired homocysteine removal by renal disease (*Selhub et al., 2000*).

The totality of evidence from epidemiologic observations suggests an independent relationship between homocysteine and atherothrombotic vascular risk. It is quite plausible that the relationship between hyperhomocysteinemia and CVD is indirect, and is confounded by other factors (e.g., deficiencies of folate, vitamin B12, or vitamin B6 and renal insufficiency) that influence both homocysteine levels and cardiovascular risk (*Sanjay et al.*, 2006).

Aim of work

The aim of this study is to:

Compare the effect of dialysis with both low-flux and high-flux membranes on homocysteine level and its dialytic removal in pediatric patients with ESRD on regular hemodialysis.

Chapter 1 Renal Failure

The term "renal failure" means failure of renal excretory function owing to depression of glomemlar filtration rate (GFR) (*Andreoli*, 1999).

Acute Renal Failure (ARF):

Introduction

Acute renal failure denotes the abrupt onset of renal dysfunction leading to the inability to regulate acid-base and electrolyte balance and to excrete wastes and fluid. Increased understanding of the pathophysiology and clinical spectrum of acute renal failure has led to a change in nomenclature of this condition to acute kidney injury (AKI), acknowledging that acute renal dysfunction occurs due to injurious endogenous or exogenous disease processes (*Michael & Goldstein*, 2008).

Epidemiology

The epidemiologic importance of AKI as a public health problem is underscored by evidence showing that even a small reduction (0.3 mg/dL serum creatinine increase) in the renal function of hospitalized adult and pediatric patients is a risk factor for morbidity and mortality (*Price et al.*, 2007).

Although little data exist to describe the incidence of pediatric AKI, the prevalence of hospital and pediatric ICU-acquired AKI appears to be increasing, which may result from changes in diagnostic profiles over the last 10–20 years and increasing use of more invasive management to support critically ill children and higher illness severity of these patients (*Vachvanichsanong et al.*, 2006).

When requirement for some form of renal replacement therapy (RRT) as the strictest definition of AKI is used, its incidence in the PICU ranges from 1–2% (*Bailey et al.*, 2007).

In 2004, a consensus definition for AKI was proposed by the Acute Dialysis Quality Initiative: the RIFLE criteria (risk, injury, failure, loss, end-stage renal disease). The adult-derived RIFLE definition was modified, and then applied and validated in pediatric patients and renamed as the pediatric RIFLE (pRIFLE) criteria. pRIFLE stratifies AKI from mild (R, *risk*) to severe (F, *failure*) (Table 1) (*Bellomo et al.*, 2004).

Table 1 Pediatric RIFLE criteria definition of acute kidney injury

Pediatric RIFLE criteria			
Estir	nated CrCI (eCCI) ^a	Urine output	
Risk Injury Failure Loss End stage	eCrCl decrease by 25% eCrCl decrease by 50% eCrCl decrease by 75% or eCrCl <35mL/ min/1.73 m ₂ Persistent failure >4 weeks. End stage renal disease. (persistent failure >3 months	<0.5ml/ kg/h for 8h <0.5mL/ kg/ h for 16 h <0.3mL/ kg/ h for 24 h Or anuric for 12 h	

^a Estimated creatinine clearance calculation is discussed later.

(*Bellomo et al.*, 2004)

Etiology and Pathophysiology of AKI

A recent pediatric retrospective study revealed that the most common causes of AKI in a tertiary health care center were renal ischemia, nephrotoxic medication use, and sepsis(*Hui-Stickle et al., 2005*). Each of these conditions cause AKI via different mechanisms. They lead to a final common pathway of acute tubular necrosis (ATN), characterized by renal tubular epithelial cell death. Table 2 lists common causes of AKI.

I. Prerenal AKI

Prerenal AKI refers to the abrupt decrease in GFR following renal hypoperfusion, as shown in table 2 (*Michael & Goldstein*, 2008).

In the setting of this decreased renal perfusion, several adaptive responses come into play, aiming at maintaining GFR and restoring intravascular volume via neurohormonal mechanisms. Decreased renal perfusion leads to increase in adrenergic activity and stimulation of the renin–angiotensin–aldosterone (RAA) axis and antidiuretic hormone (ADH) release (*Devarajan*, 2005). The increase in adrenergic activity leads to systemic vasoconstriction, thereby increasing blood pressure. Stimulation of the RAA system leads to reabsorption of salt and water. Increase in systemic ADH leads to retention of water by the collecting tubule. Each of these mechanisms favors the maintenance of intravascular volume and systemic blood pressure and thus maintaining GFR (*Lameire et al.*, 2005).