

Investigating the Effect of Boundary Conditions on the Evaluation of Seismic Response Modification Factor of Steel Frames

\mathbf{BY}

MASOOD MAJED MOHAMMED IRHEEM

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the Degree of
MASTER OF SCIENCE

In STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

Investigating the Effect of Boundary Conditions on the Evaluation of Seismic Response Modification Factor of Steel Frames

BY MASOOD MAJED MOHAMMED IRHEEM

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the Degree of
MASTER OF SCIENCE

In
STRUCTURAL ENGINEERINGNG

Under the Supervision of

Prof. Dr. WALID A. ATTIA

Professor of Structural Analysis and Mechanics
Structural Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2015

Investigating the Effect of Boundary Conditions on the Evaluation of Seismic Response Modification Factor of Steel Frames

BY MASOOD MAJED MOHAMMED IRHEEM

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the Degree of

MASTER OF SCIENCE

In

STRUCTURAL ENGINEERINGNG

Approved by the
Examining Committee

Prof. Dr. Walid A. Attia, Thesis Main Advisor
Professor of Structural Analysis and Mechanics, Cairo University

Prof. Dr. Sherif A. Mourad, Internal Examiner
Professor of Steel Structures and Bridges, Cairo University

Prof. Dr. Ezzeldin Yazeed Sayed Ahmed, External ExaminerProfessor of Steel Structures and Bridges, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

Engineer: Masood Majed Mohammed Irheem

Date of Birth: 05/07/1989
Nationality: Palestinian

E-mail: masoud.e@hotmail.com

Phone.: +201068777656 (or) +970599421519 Address: 1 Al-sunia Mousqe St., Al Haram St., Giza

Registration Date: 01/03/2013 Awarding Date: .../ ... /

Degree: Master of Science.
Department: Structural Engineering

Supervisors: Prof. Dr. Walid A. Attia (Thesis Main Advisor)

Examiners: Prof. Dr. Walid A. Attia (Thesis Main Advisor)

Professor of Structural Analysis and Mechanics, Cairo University

Prof. Dr. Sherif A. Mourad (Internal Examiner)

Professor of Steel Structures and Bridges, Cairo University

Prof. Dr. Ezzeldin Yazeed Sayed Ahmed (External Examiner)Professor of Steel Structures and Bridges, Ain Shams University

Title of Thesis:

Investigating the Effect of Boundary Conditions on the Evaluation of Seismic Response Modification Factor of Steel Frames

Key Words:

Response modification factors, Ductility reduction value, Overstrength value, steel frames, non-linear static analysis.

Summary:

This study investigates the effects of boundary conditions as "support type of column and direction of strong axis of column" on the response modification factor "R-factor" for steel frames. Besides, other parameters as number of bays, story number and position of bracing. All steel frames are designed according to Egyptian Code. Based on the results, for each different boundary condition there is different R value, that's mean, the R-factor is unique for each steel frame and depended on stiffness of the frame system; R-factor increases when fundamental period is decreased and braced frames have value smaller than un-braced frames. Types of support of column have high effect on fundamental period for un-braced frames and less for braced frames. Direction of column has effect on R-factor for both types of frames. Egyptian Code gives limited R-value for steel frames comparing to this study. The minimum value of R-factor for each frame in this study is close to the value in the Code, which means the Code is more conservative.

KNOWLEDGMENTS

Thanks Allah for the great care and help to present this thesis.

I would like to thank to my supervisor Prof. Dr. Walid A. Attia for the support that he has provided during my study.

I would like to thank to my parents, for their invaluable supports and understandings.

I would like to thank to my friends who did "not" leave me alone during this period of time.

TABLE OF CONTENTS

AKNOWLEDGMENTS	I
TABLE OF CONTENTS	II
LIST OF TABLES	V
LIST OF FIGURES	VII
NOMENCLATRUE	XIII
ABSTRC	XV
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.2 Objective	2
1.3 Scope of the research	2
1.4 Organization of the thesis	3
CHAPTER 2: LITERATURE REVIEW	4
2.1 Introduction	4
2.2 Definition of R factor and its components	4
2.2.1 Ductility Reduction Factor (Rµ)	6
2.2.1.1 Recent Study about Ductility Reduction factor	7
2.2.1.1.1 Newmark and Hall (1973)	7
2.2.1.1.2 Riddell and Newmark (1979)	8
2.2.1.1.3 Riddell, Hidalgo and Cruz (1989)	9
2.2.1.1.4 Miranda (1993)	10
2.2.1.1.5 Lai and Biggs (1980)	12
2.2.1.1.6 Nassar and Krawinkler (1991)	12
2.2.2 Overstrength Factor (R_s)	13
2.2.2.1 Recent Study about Overstrength Reduction factor.	14
2.2.2.1.1 Osteraas and Krawinkler (1990)	14
2.2.2.1.2 Kappos (1999)	14
2.2.2.1.3 Freeman (1990)	14
2.2.2.1.4 Humar and Rahgozar (1996)	14

2.2.2.1.5 Rahgozar and Humar (1998)	14
2.2.2.1.6 Balendra and Huang (2003)	14
2.2.2.1.7 Kim and Choi (2005)	15
2.3 Previous Studies of R-factor	15
2.3.1 Serhan BAKIR (2005)	15
2.3.2 Mussa Mahmoud & Mahdi Zaree (2010)	15
2.3.3 Gh. Abdollahzadeh &MR. Banihashemi (2012)	16
2.3.4 Gh. Abdollahzadeh and A. Kambukhsh (2012)	16
2.3.5 Hassan, M.M. (2009)	16
3.3.6 Mussa Mahmoud and Vahid Eskandovi (2013)	17
3.3.7 Jinkoo Kim and Hyunhoon Choi (2005)	17
2.4 R-factor in different seismic code	17
2.4.1 Egyptian Code (ECP-201), 2012.	17
2.4.2 Internation Building Code, IBC 2012	18
2.4.3 Uniform Building Code. UBC 1997	19
2.4.4 Euro Code (EC8), 2003	19
2.4.5 Japanese Code, BCJ	20
2.4.6 Turkish Code	21
2.5 Non-Linear Static Analysis:	21
2.5.1 General	21
2.5.2 Procedures of Pushover Analysis.	22
2.5.3 Pushover Analysis With Sap2000.	22
2.5.4 Idealization of Pushover Curve.	23
2.5.4.1 FEMA-356 method (2000)	23
2.5.4.2 ATC-40 method (1996)	23
2.5.4.3 Paulay and Priestly Method (1992)	24
2.5.6 Lateral load patterns.	24
2.5.6.1 FEMA-356- lateral load pattern (2000)	25
2.5.6.1.1 'Uniform' Lateral Load Pattern	25
2.5.6.1.2 'Elastic First Mode' Lateral Load Pattern	25
2.5.6.1.3 'Code' Lateral Load Pattern	25
2.5.6.1.4 'FEMA-356 (2000)' Lateral Load Pattern	25
IADTED 2 METHODOLOGY	27

3.1 Frame Types.	27
3.2 Frame Design	31
3.2.1 Equivalent Lateral Load Analysis.	31
3.2.2 Gravity Load Analysis	33
3.2.3 Material	33
3.3 Analysis Methodology	33
3.3.1 Plastic hinge definition	33
3.3.2 Lateral load pattern	36
3.4 Verification Example	36
3.4.1 Properties of "A-3-3-PR" steel frame	36
3.4.2 Gravity Load Analysis.	37
3.4.3 Results of the "A-3-3-PR"	38
CHAPTER 4: RESULTS OF ANALYSIS	40
4.1 General	40
4.2 Results and Discussion	42
4.2.1 Plastic hinges formation	42
4.2.2 Seismic Response Modification Factor (R)	45
4.2.3 Overstrength Factor (R _s)	61
4.2.4 Ductility Reduction Factor (R _µ)	64
4.2.5 Fundamentals Period (T)	67
4.3 Conclusions.	73
CHAPTER 5: SUMMARY OF RESULTS AND CONCLUSIONS	74
5.1 General.	74
5.1 Summary of Results	74
5.2 Conclusions	74
5.3 Further Work	75
REFERENCES	76
APPENDEX A: Frame Section Properties	83
APPENDEX B: Tables of R-factor component	103
APPENDEX C. Pushover Curve	133

List of Tables

Table 2.1: R* & T* values proposed by authors Riddell, Hidalgo and Cruz	10
Table 2.2: α& βcoefficients proposed by authors Lai & Biggs	12
Table 2.3: a & b coefficients per strain-hardening ratio	13
Table 2.4: Basic value of response factor q0	19
Table 2.5: Values of k _D represent ductility class in Euro code	20
Table 2.6: Values of k _R reflecting structural irregularity in elevation in Euro code	20
Table 3.1: Denotes of Frame Naming	28
Table 3.2: Gravity Loads for "A-3-3-PR" Steel Frame by BAKIR (2006)	37
Table 3.3: Comparison between Results of BAKIR (2006) and Present	38
Table 4.1: Denotes of Frame Naming	40
Table B.1: Calculated R Factors – "A-3-3".	103
Table B.2: Calculated R Factors – "A-4-3"	104
Table B.3: Calculated R Factors – "A-5-3"	105
Table B.4: Calculated R Factors – "A-3-6"	106
Table B.5: Calculated R Factors – "A-4-6".	107
Table B.6: Calculated R Factors – "A-5-6"	108
Table B.7: Calculated R Factors – "A-3-9".	109
Table B.8: Calculated R Factors – "A-4-9"	110
Table B.9: Calculated R Factors – "A-5-9"	111
Table B.10: Calculated R Factors – "B-3-3"	112
Table B.11: Calculated R Factors – "C-3-3"	113
Table B.12: Calculated R Factors – "B-4-3"	114
Table B.13: Calculated R Factors – "C-4-3"	115
Table B.14: Calculated R Factors – "B-5-3"	116
Table B.15: Calculated R Factors – "C-5-3"	117
Table B.16: Calculated R Factors – "D-5-3"	118
Table B.17: Calculated R Factors – "B-3-6"	119
Table B.18: Calculated R Factors – "C-3-6"	120
Table B.19: Calculated R Factors – "B-4-6"	121

Table B.20: Calculated R Factors – "C-4-6"	122
Table B.21: Calculated R Factors – "B-5-6"	123
Table B.22: Calculated R Factors – "C-5-6"	124
Table B.23: Calculated R Factors – "D-5-6"	125
Table B.24: Calculated R Factors – "B-3-9"	126
Table B.25: Calculated R Factors – "C-3-9"	127
Table B.26: Calculated R Factors – "B-4-9"	128
Table B.27: Calculated R Factors – "C-4-9"	129
Table B.28: Calculated R Factors – "B-5-9"	130
Table B.29: Calculated R Factors – "C-5-9"	131
Table B.30: Calculated R Factors – "D-5-9"	132

List of Figure

Fig. 2.1: Relationship between Response modification factor (R), structural overstrength (Ω), and ductility reduction factor (R μ)
Fig. 2.2: Plots of Ductility Reduction Factors Proposed by Newmark and Hall8
Fig. 2.3: Plots of Ductility Reduction Factors Proposed by Riddell and Newmark9
Fig. 2.4: Plots of Ductility Reduction Factors Proposed by Riddell, Hidalgo and Cruz10
Fig. 2.5a: Plots of Ductility Reduction Factors Proposed by Miranda
Fig. 2.5b: Plots of Ductility Reduction Factors Proposed by Miranda
Fig. 2.6: Plots of Ductility Reduction Factors Proposed by Lai and Biggs
Fig. 2.7: Plots of Ductility Reduction Factors Proposed by Nassar and Krawinkler13
Fig. 2.8 Idealized Force-Displacement Curve for Displacement Coefficient Method (FEMA356)
Fig. 2.9 Bi-Linear Idealized of Pushover Curve by ATC-40 (1996)24
Fig. 2.10 Bi-Linear Idealized of Pushover Curve by Paulay and Priestly Method24
Fig. 3.1: Frame Type of Steel Structure for this study
Fig. 3.2: Direction of column and Release connection
Fig. 3.3: Model of Steel Structure for this study
Fig. 3.4: Elastic response spectra, type1, ECP-201 (2012)
Fig.3.5: Force versus displacement curve for default plastic hinge definition in SAP2000
Fig 3.6: properties cross section of "A-3-3-PR" steel frame by BAKIR
Fig. 3.7: Pushover Curve of present study
Fig. 3.8: Pushover Curve of BAKIR (2006)
Fig. 4.1: Frame Type
Fig. 4.2: Plastic hinges formation at failure for 9-storeys frame with two case "A-3-9 [YY-1]" & "A-3-9 [YY-4]"
Fig. 4.3: Plastic hinges formation at failure for 9-storeys frame with two case "A-3-9
[YY-2]" & "A-3-9 [YY-3]"

Fig. 4.4: Plastic hinges formation at failure for 9-storeys frame with two case "A-3-9
[XX-1]" & "A-3-9 [XX-4]"
Fig. 4.5: Plastic hinges formation at failure for 9-storeys frame with two case "A-3-9 [XX-1]" & "A-3-9 [XX-4]"
Fig. 4.6: Response modification factor for frame "A-3-3" with all boundary conditions45
Fig. 4.7: Values of R-factor with all different boundary conditions for different height for frames "A-3-3", "A-3-6" & "A-3-9"
Fig. 4.8: Values of R-factor with all different boundary conditions for different heights for frames "A-4-3", "A-4-6" & "A-4-9"
Fig. 4.9: Values of R-factor with all different boundary conditions for different height for frames "A-5-3", "A-5-6" & "A-5-9"
Fig. 4.10: Values of R-factor with all different boundary conditions for different number of bays for frames "A-3-3", "A-4-3" & "A-5-3"
Fig. 4.11: Values of R-factor with all different boundary conditions for different number of bays for frames "A-3-6", "A-4-6" & "A-5-6"
Fig. 4.12: Values of R-factor with all different boundary conditions for different number of bays for frames "A-3-9", "A-4-9" & "A-5-9"
Fig. 4.13: Values of R-factor with all different boundary conditions for different number of storey for frames "B-3-3", "B-3-6" & "B-3-9"
Fig. 4.14: Values of R-factor with all different boundary conditions for different number of storey for frames "B-4-3", "B-4-6" & "B-4-9"
Fig. 4.15: Values of R-factor with all different boundary conditions for different number of storey for frames "B-5-3", "B-5-6" & "B-5-9"
Fig. 4.16: Values of R-factor with all different boundary conditions for different number of bays for frames "B-3-3", "B-4-3" & "B-5-3"
Fig. 4.17: Values of R-factor with all different boundary conditions for different number of bays for frames "B-3-6", "B-4-6" & "B-5-6".
Fig. 4.18: Values of R-factor with all different boundary conditions for different number of bays for frames "B-3-9", "B-4-9" & "B-5-9"
Fig. 4.19: Values of R-factor with all different boundary conditions for different number of storey for frames "C-3-3", "C-3-6" & "C-3-9".
Fig. 4.20: Values of R-factor with all different boundary conditions for different number of storey for frames "C-4-3". "C-4-6" & "C-4-9".

Fig. 4.21: Values of R-factor with all different boundary conditions for different number of storey for frames "C-5-3", "C-5-6" & "C-5-9".
Fig. 4.22: Values of R-factor with all different boundary conditions for different number of bays for frames "C-3-3", "C-4-3" & "C-5-3".
Fig. 4.23: Values of R-factor with all different boundary conditions for different number of bays for frames "C-3-6", "C-4-6" & "C-5-6".
Fig. 4.24: Values of R-factor with all different boundary conditions for different number of bays for frames "C-3-9", "C-4-9" & "C-5-9".
Fig. 4.25: Values of R-factor with all different boundary conditions for different number of storey for frames "D-5-3", "D-5-6" & "D-5-9".
Fig. 4.26: Values of R-factor with all different boundary conditions for different frame types of "B-3-3" & "C-3-3"
Fig. 4.27: Values of R-factor with all different boundary conditions for different frame types of "B-4-3" & "C-4-3"
Fig. 4.28: Values of R-factor with all different boundary conditions for different frame types of "B-5-3", "C-5-3" & "D-5-3"
Fig. 4.29: Values of R-factor with all different boundary conditions for different frame types of "B-3-6" & "C-3-6".
Fig. 4.30: Values of R-factor with all different boundary conditions for different frame types of "B-4-6" & "C-4-6"
Fig. 4.31: Values of R-factor with all different boundary conditions for different frame types of "B-5-6", "C-5-6" & "D-5-6".
Fig. 4.32: Values of R-factor with all different boundary conditions for different frame types of "B-3-9" & "C-3-9".
Fig. 4.33: Values of R-factor with all different boundary conditions for different frame types of "B-4-9" & "C-4-9".
Fig. 4.34: Values of R-factor with all different boundary conditions for different frame types of "B-5-9", "C-5-9" & "D-5-9"
Fig. 4.35: Values of R-factor for frame type A (with all strong axis of all column in X-direction and Fixed column support type) & Frame type B
Fig. 4.36: Values of R-factor for frame type A (with all strong axis of all column in X-direction and Fixed column support type) & Frame type C
1 Fig.4.37: Values of Overstrength factor with all different boundary conditions for different number of storey for frames "A-3-3", "A-3-6" & "A-3-9"

Fig. 4.38: Values of Overstrength factor with all different boundary conditions for different number of storey for bays "A-3-3", "A-4-3" & "A-5-3"
Fig. 4.39: Values of Overstrength factor with all different boundary conditions for different number of storey for bays "B-3-3", "B-3-6" & "B-3-9"
Fig. 4.40: Values of Overstrength factor with all different boundary conditions for different number of bays for frame "B-3-3", "B-4-3" & "B-5-3"
Fig. 4.41: Values of Overstrength factor with all different boundary conditions for different number of storey for frames "C-3-3", "C-3-6" & "C-3-9"
Fig. 4.42: Values of Overstrength factor with all different boundary conditions for different number of bays for frames "C-3-3", "C-4-3" & "C-5-3"
Fig. 4.43: Values of Ductility reduction factor with all different boundary conditions for different number of storey for frames "A-3-3", "A-3-6" & "A-3-9
Fig. 4.44: Values of Ductility reduction factor with all different boundary conditions for different number of bays for frames "A-3-3", "A-3-6" & "A-3-9
Fig. 4.45: Values of Ductility reduction factor with all different boundary conditions for different number of storey for frames "B-3-3", "B-3-6" & "B-3-9
Fig. 4.46: Values of Ductility reduction factor with all different boundary conditions for different number of bays for frames "B-4-3", "B-4-3" & "B-5-3.
Fig. 4.47: Values of Ductility reduction factor with all different boundary conditions for different number of storey for frames "C-3-3", "C-3-6" & "C-3-9
Fig. 4.48: Values of Ductility reduction factor with all different boundary conditions for different number of bays for frames "C-3-3", "C-4-3" & "C-5-3"
Fig. 4.49: Values of Fundamentals period with all different boundary conditions for different number of storey for frames "A-3-3", "A-3-6" & "A-3-9"
Fig. 4.50: Values of Fundamentals period with all different boundary conditions for different number of bays for frames "A-3-3", "A-4-3" & "A-5-3"
Fig. 4.51: Values of Fundamentals period with all different boundary conditions for different number of bays for frames "B-3-3", "B-3-6" & "B-3-9"
Fig. 4.52: Values of Fundamentals period with all different boundary conditions for different number of bays for frames "C-3-3", "C-3-6" & "C-3-9"
Fig. 4.53: Fundamental Period vs. Ductility Reduction Factor (Rμ), Overstrength Factor (Rs) & Response Modification Factor (R) for Frame A-3-3 with boundary condition [XX]70
Fig. 4.54: Fundamental Period vs. Ductility Reduction Factor (Rμ), Overstrength Factor (Rs) &Response Modification Factor (R) for Frame A-3-3 with boundary condition [YX]
/

Fig. 4.55: Fundamental Period vs. Ductility Reduction Factor (Rμ), Overstrength I	
(Rs) & Response Modification Factor (R) or Frame A-4-6 with boundary con [XX]	
Fig. 4.56: Fundamental Period vs. Ductility Reduction Factor (Rμ), Overstrength I (Rs) & Response Modification Factor (R)for Frame A-4-6 with boundary con [YX].	dition
Fig. 4.57: Fundamental Period vs. Ductility Reduction Factor (Rμ), Overstrength I (Rs) & Response Modification Factor (R)for Frame B-3-3 with boundary con [YY].	dition
Fig. 4.58: Fundamental Period vs. Ductility Reduction Factor (Rμ), Overstrength I (Rs) &Response Modification Factor (R) for Frame B-3-3 with boundary con [YX].	dition
Fig. A.1: Cross-section member for frames "A-3-3" & "A-3-6"	83
Fig. A.2: Cross-section member for frames "A-3-9".	84
Fig. A.3: Cross-section member for frames "A-4-3" & "A-4-6"	85
Fig. A.4: Cross-section member for frames "A-4-9"	86
Fig. A.5: Cross-section member for frames "A-5-3" & "A-5-6"	87
Fig. A.6: Cross-section member for frames "A-5-9"	88
Fig. A.7: Cross-section member for frames "B-3-3" & "B-3-6"	89
Fig. A.8: Cross-section member for frames "B-3-9"	90
Fig. A.9: Cross-section member for frames "B-4-3" & "B-4-6"	91
Fig. A.10: Cross-section member for frames "B-4-9"	92
Fig. A.11: Cross-section member for frames "B-5-3" & "B-5-6"	93
Fig. A.12: Cross-section member for frames "B-5-9".	94
Fig. A.13: Cross-section member for frames "C-3-3" & "C-3-6"	95
Fig. A.14: Cross-section member for frames "C-3-9".	96
Fig. A.15: Cross-section member for frames "C-4-6"	97
Fig. A.16: Cross-section member for frames "C-4-9".	98
Fig. A.17: Cross-section member for frames "C-5-6".	99
Fig. A.18: Cross-section member for frames "C-5-9"	100
Fig. A.19: Cross-section member for frames "D-5-3" & "D-5-6"	101
Fig. A.20: Cross-section member for frames "D-5-9".	102
Fig. C 1: Frame Type "B-4-9 [A-1]" Base Shear vs. Roof Displacement Diagram	133