

MAXIMIZING THE HYDRAULIC EFFICIENCY OF AQUATIC WEED BARRIERS IN OPEN CHANNEL

By Ola Mohamed Eraky

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the degree of
MASTER OF SCIENCE

In

Irrigation and Hydraulics Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

MAXIMIZING THE HYDRAULIC EFFICIENCY OF AQUATIC WEED BARRIERS IN OPEN CHANNEL

By

Ola Mohamed Eraky

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the degree of
MASTER OF SCIENCE

In

Irrigation and Hydraulics Engineering

Under the supervision of

Prof.Dr. Ahmed W. Abdeldaym
.....
Professor of Hydrology
Irrigation and Hydraulic Department
Faculty of Engineering, Cairo University

Dr. Emam A. Emam	Prof. Assist. Fatni A. Elgamai
Researcher	Assistant Professor
Channel Maintenance Research Institute	Irrigation and Hydraulic Department
National Water Research Center	Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

MAXIMIZING THE HYDRAULIC EFFICIENCY OF AQUATIC WEED BARRIERS IN OPEN CHANNEL

By
Ola Mohamed Eraky

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the degree of
MASTER OF SCIENCE
In

Irrigation and Hydraulics Engineering

Approved by the Examining Committee	
Prof.Dr. Ahmed Wagdi Abdelda	ym
Prof.Dr. Ashraf Hassan Moheb	
Prof.Dr. Maha Mohsen Tawfik	

(Vice President of the National Water Research Center)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Engineer: Ola Mohamed Eraky Khalail

Date of Birth: 15 /80/ 1987 **Nationality:** Egyptian

E-mail: ola-eng15@yahoo.com

Phone.: 01275762192

Address: El-Kanater, Qualubai, Egypt

Registration Date: 01/10/2010

Registration Date: / /

Degree: Master of Science

Department : Irrigation and Hydraulic Engineering

Prof. Ahmed Wagdy Abdeldayem

Dr. Fathy Abdallah Elgamal

Supervisors:

Dr. Emam Anter Emam

Prof. Dr. Ahmed Wagdy Abdeldayem

Examiners: Prof. Dr. Ashraf Hassan Moheb

Prof. Dr. Maha Mohsen Tawfik

Title of Thesis:

Maximizing the hydraulic efficiency of aquatic weed barriers in open channel

Key Words:

Aquatic weeds, Barrier screen, Open channel

Summary:

Due to the pressing and permanent need for the fresh water running in open channels, the challenging problems facing water flow management should be controlled continuously. One of these problems is the growth of aquatic weeds in waterways. They have negative impacts on the hydraulic efficiency of the open channel. The present experimental study has been carried out, to examine the effects of barrier screen on the hydraulic efficiency of open channels in presence of different accumulations of weeds. The barrier screen is one of the most common ways used to handle the problem of aquatic weed invasion through waterways. A number of scenarios with different discharges and water depths in case of different weed densities were experimented. The water surface profiles and water velocity profiles for each scenario were examined, and recorded. Analyzing the final results, a new empirical formula could be obtained correlating weed characteristics and flow characteristics.

Acknowledgement

First of all, thanks to ALLAH

This research has been completed with the support and assistance of a large number of people. I wish to express my gratitude to some of those who have helped and inspired me during my research work.

My great respect and appreciation are always to my supervisors and mentors **Prof. Ahmed W. Abdeldaym, Prof. Assist. Fathi A. Elgamal and Dr. Emam A. Emam**for their guidance and patience during my study. I sincerely thank them for their encouragement, expert advice, technical assistance and patience.

A special word of thanks is to **Prof. Dr. Hosam Mahmoud**, Deputy director of Channel Maintenance Research Institute (CMRI) - National Water Research Center (NWRC), for his kind and friendly assistance, valuable advice, and devoted time and effort throughout this work.

Acknowledgment is given to **Prof. Dr. TAREK AHMED ELSAMMAN**, Director of Channel Maintenance Research Institute (CMRI) for his support and guidance. I'd like also to thank my colleges in (CMRI) and the technical staff of the hydraulic laboratory for their sincere efforts through this work.

Last but not least, I'd like to thank my big family and my small family for their self-denial and for sparing no effort in encouraging and supporting me continuously throughout my study.

Eng./ Ola Mohamed Eraky

Table of Contents

	ACKNOV	WLEDGEMENT	i
	TABLE (DECONTENTS	II
	LIST OF	TABLES	VII
	LIST OF	FIGURES	VII
	SYMBOI	LES AND ABBREVIATIONS	XIV
	ABSTRA	CT	XV
СНА	APTER 1 :	INTRODUCTION	1
1.1	General		1
1.2	Problem	Statement	2
1.3	Study O	bjectives	2
	1.3.1	Main objectives	2
	1.3.2	Secondary objectives	2
1.4	Thesis o	organization	3
СНА	PTER 2 :	LITERATURE REVIEW	4
2-1	Introduc	etion	4
2-2	Flow Ch	naracteristics in Open	4
	2-2-1	Flow without vegetation	4
	2-2-2	Flow in Vegetated Channels	5
	2-2-3	Flow Characteristics in Simulated Vegetated Channels	6
	2-2-4	The Effect of Aquatic Weeds on the Hydraulic Structures	7
2-3	Sources	of Debris	8

2-4	Weeds barrier characteristics and its design	9
	2-4-1 Trash screen/ Barrier	9
	2-4-1-1 Hydraulic impact	10
	2-4-1-2 General design of trash screen	11
	2-4-1-3 Screen Cleaning and Debris Removal	15
	2-4-1-4Research relating to measuring the performance of trash screens	16
	2-4-2 Aquatic Barrier	16
2-5	Weeds barrier projects in Egypt	18
СНА	TER 3: THEORITICAL APPROACH	21
3-1 Introduction		21
3-2 Dimensional Analysis		21
3-3 Physical model scale		26
СНА	TER 4: EXPERIMENTAL WORK	27
4-1	Introduction	27
4-2	Experimental Equipment	27
	4-2-1 The experimental Flume	27
	4-2-2 The tail gate	30
	4-2-3 The hydraulic structure	30
4-3	Measuring equipment	32
	4-3-1 The measuring Carriage	32

	4-3-2	Current flow meter	33
	4-3-3	The point gauge	34
	4-3-4	Vectrino 3D water velocity sensor (Lab probe)	34
4-4	Scenario	s of the study	35
CHA	APTER 5:	ANALYSIS AND DISCUSSION OF THE	
EXF	PERIMEN	TAL RESULTS	43
5-1	Introduc	tion	43
5-2	Effect of v	veeds accumulated upstream the barrier screen on the flow	43
	5-2-1	Water surface Profiles	43
	5-2-2	Water velocity profiles	50
		5-2-2-1Upstream water velocity profiles	50
		5-2-2-2Downstream water velocity	52
5-3	Influence	of the accumulated weed on the upstream head losses	55
5-4		of the accumulated weed characteristics on the downstream bed	57
	shear stres	S	
5-5	Influence on number	of the accumulated weed characteristics on the upstream Froude	60
	5-5-1	Relation between upstream Froude number and the blocking	60
	5-5-2	Relation between upstream Froude number and the relative	61
	5-5-3	length of the weed reach Relation between upstream Froude number and the relative weed reach depth	62

5-6		Influence of the accumulated weed characteristics on the downstream Froude number	
	5-6-1	Relation between downstream Froude number and the	63
	5-6-2	Relation between downstream Froude number and the relative	64
	5-6-3		65
5-7		Relationships	66
J-1	-	Relation between the accumulated weed characteristics and	00
	3-7-1	$\left(\frac{Q}{V_u * Y_u^2}\right)$	69
	5-7-2	Relation between the accumulated weed characteristics and	
		$\left(\frac{Q}{V_{d\max}(Y_d)^2}\right)$	70
	5-7-3	Relation between the accumulated weed characteristics and	71
		(Fr_{da})	/ 1
		$\underline{\underline{Y}_d}$ $\underline{\underline{Y}_u}$	74
	5-7-4	Relation between a and a	/ -
5-8	Solved Ex	ample	77
5-9	Vertical ar	nd Inclined Barrier Screen	80
CH	APTER 6:	CONCLUSIONS AND RECOMMENDATIONS	86
6-1	conclusi	on	83
6-2	Further	Studies	84
REI	FERENCE	S	85

Appendix (A) 90
Arabic Summary

List of Tables

		Page
Table (2.1)	Classification of debris (EA, 2009)	8
Table (2.2)	Main components of a screen (EA 2009, p39)	11
Table (2.3)	Gradient adjustments for dDa calculations (EA 2009, p43)	13
Table (2.4)	Blinded Depth Factor (EA 2009, p43)	13
Table (2.5)	The total number of study scenarios	44
Table (2.6)	Upstream water slope and losses upstream the barrier screen for the plotted cases	49
Table (2.7)	the correlation matrix for the hypothetical relationships, which show the strength of the relationship between the independent parameters and the dependant variables	73

List of Figures

		Page
Figure (2-1)	Floating Weeds Representation	7
Figure (2-2)	Definition sketch for submerged flow under sluice gate.	7
Figure (2-3)	Debris composition in water courses (flood risk management consortium)	9
Figure (2-4)	The screen clear of debris	10
Figure (2-5)	Increasing water depth upstream the screen "caused by debris blockage"	11
Figure (2-6)	Expected amount of debris for different catchment types (EA, 2009)	13
Figure (2-7)	Sketch for barrier head loss parameters	14
Figure (2-8)	Example for manual screen cleaners	15
Figure (2-9)	Example for mechanical screen cleaners	16
Figure (2-10)	Components of the proposed barrier buoy units	17
Figure (2-11)	Existing forces on each buoy units of the barrier and on gravity anchorage block.	18

Figure (2-12)	New Esna barrage barrier	19
Figure (2-13)	Old Esna barrage barrier	19
Figure (2-14)	Detailed design of buoy unit in the barrier (Section elevation)	20
Figure (3-1)	Definition sketch for the Barrier dimensions	22
Figure (3-2)	Cross sections dimensions	23
Figure (4-1)	An experimental flume with its ground reservoir	28
Figure (4-2)	Cross-section for experimental flume and underground reservoir	29
Figure (4-3)	Flume inlet and the basin	29
Figure (4-4)	Tilted tailgate	30
Figure (4-5)	Barrier screen layout	31
Figure (4-6)	Barrier screen	31
Figure (4-7)	An upholstery stuffing material for simulating weeds	32
Figure (4-8)	measuring carriage	33

Figure (4-9)	Current flow meter	33
Figure (4-10)	A 3-d water velocity sensor (a lab probe) called "Vectrino"	34
Figure (4-11)	Smooth case description / No accumulated weeds	37
Figure (4-12)	Group 2/variation of the weed reach length at constant weed depth and width	38
Figure (4-13)	Group 2/variation of the weed reach depth at constant weed length and width	39
Figure (4-14)	Group 3/variation of the weed reach width at constant weed length and depth	40
Figure (4-15)	Variation in the inclining angle of the barrier screen at the same weed density	41
Figure (5-1)	Effect of variation in weed reach length on water surface profile at constant weed depth and width (Q= 40 l/s and tail gate opening= 35 cm)	44
Figure (5-2)	Effect of variation in weed reach depth on water surface profile at constant weed length and width (Q= 40 l/s and tail gate opening= 35 cm)	45
Figure (5-3)	Effect of variation in weed reach width on water surface profile at constant weed length and depth (Q= 40 l/s and tail gate opening= 35 cm)	46
Figure (5-4)	Effect of variation in weed reach width on the transversal water surface profile just upstream the accumulated weeds at constant weed length and depth	48

Figure (5-5)	water surface profile at a distance of 0.50 m upstream the accumulated weeds at constant weed length and depth.	49
Figure (5-6)	Change in water surface profile relative to the change in discharges at constant tail gate opening	50
Figure (5-7)	Effect of variation in weed reach length on upstream velocity profile at constant weed depth and width (Q= 40 l/s and tail gate opening= 35 cm)	51
Figure (5-8)	Effect of variation in weed reach depth on upstream velocity profile at constant weed length and width (Q= 40 l/s and tail gate opening= 35 cm)	52
Figure (5-9)	Effect of variation in weed reach width on upstream velocity profile at constant weed length and depth (Q= 40 l/s and tail gate opening= 35 cm)	52
Figure (5-10)	Change in upstream velocity profile relative to the change in discharges at constant tail gate opening (for case 1)	53
Figure (5-11)	Effect of variation in weed reach length on downstream velocity profile at constant weed depth and width (Q= 40 l/s and tail gate opening= 35 cm)	54
Figure (5-12)	Effect of variation in weed reach depth on downstream velocity profile at constant weed length and width (Q= 40 l/s and tail gate opening= 35 cm)	55
Figure (5-13)	Effect of variation in weed reach width on downstream velocity profile at constant weed length and depth (Q= 40 l/s and tail gate opening= 35 cm)	55
Figure (5-14)	Change in downstream velocity profile relative to the change in discharges at constant tail gate opening (for case 1)	56