

Recent Updates in Anesthesia for Cardiac Patients Undergoing Non-Cardiac Surgery

Essay

Submitted for partial fulfillment of Master degree of Anesthesia

Presented By

Douaa Galal Mohammed Mohammed

M.B.B.Ch Ain Shams University

Supervised by

Prof. Dr. Zakaria Abdel-Aziz Mustafa

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Amr Mohammed Abdel-Fatah

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Ibrahim Mohammed Ibrahim

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

Acknowledgements

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Zakaria Abdel-Aziz Mustafa**, Professor of Anesthesia and Intensive Care, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to Ass. Prof. Dr. Amr Mohammed Abdel-Fatah, Assistant Professor of Anesthesia and Intensive Care, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I would like to express my deepest gratitude and sincere thanks to **Dr. Ibrahim Mohammed Ibrahim**, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine-Ain Shams University, for suggesting and planning this work, his instructive supervision, continuous guidance, unlimited help and unfailing support, valuable instructions throughout the work and final revision of the manuscript.

Douaa Galal Mohammed Mohammed

Contents

List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	1
Basic Principles; Cardiac Anatomy and Physiology	4
Pathology of Heart Diseases	23
Pre-Operative Assessment of Cardiac Patients	61
Anesthetic Management of Cardiac Patients	107
Summary	151
References	153
Arabic Summary	

List of Abbreviations

ACC : American college of cardiologists

ACS : acute coronary syndrome AHA : American heart association

AIDS : acquired immune deficiency syndrome

APACHE : acute physiology and chronic health evaluation

aPL : antiphospholipid AR : aortic regurgitation

AS : aortic stenosis

ASA : American society of anesthiologists

ASD : atrial septal defect AV : atrioventricular AVA : aortic valve area BBs : beta blockers

BNP : brain natriuretic peptide

BP : blood pressure

Ca : Calcium

CABG : coronary artery bypass grafting

CAD : coronary artery disease
CCBs : calcium channel blockers
CCS : chronic coronary syndrome
CHD : congenital heart disease
CHF : congestive heart failure

CO : cardiac output CO₂ : carbon dioxide

CPG : clinical practice guideline CPR : cardiopulmonary resuscitation

CRF : chronic renal failure
 CVP : central venous pressure
 CVS : cerebrovascular stroke
 DASI : Duke activity status index

DM : diabetes mellitus EF : ejection fraction

ETCO₂ : end tidal carbon dioxide

List of Abbreviations (Cont.)

FMV : floppy mitral valve

GDMT : guideline directed medical therapy

GWC : guideline writing committee

HDU : high dependency unit

HOCM : hypertrophic obstructive cardiomyopathy

HR : heart rate

ICD : implantable cardioverter defibrillator

ICU : intensive care unit

IDDM : insulin dependent diabetes mellitus

IEC : infective endocarditisIHD : ischemic heart disease

IM : intramuscular IV : intravenous

IVC : inferior vena cava

K : potassium LA : left atrium

LAD : Left anterior descending LBBB : left bundle branch block LCA : left coronary artery

LCx : left circumflex

LDL : low density lipoproteins

LV : left ventricle

LVEDP : left ventricular end diastolic pressure

LVH : left ventricular hypertrophy LVOT : left ventricular outflow tract MACE : major adverse cardiac event

MET : metabolic equivalent
MI : myocardial infarction
MR : mitral regurgitation

MS : mitral stenosis

MVP : mitral valve prolapse

NBTE : nonbacterial thrombotic endocarditis

NIBP : noninvasive blood pressure

List of Abbreviations (Cont.)

NMBA : neuromuscular blocking agentsNYHA : New York heart association

O.R : operating room

 O_2 : oxygen

PAC : pulmonary artery catheter
PaCO₂ : arterial carbon dioxide tension
PAI : plasminogen activator inhibitor

PaO₂ : arterial oxygen tension

PCI : percutaneous coronary intervention PCWP : pulmonary capillary wedge pressure

PDA : patent ductus arteriosus PDA : posterior descending artery

POSSUM : physiological and operative severity score for

the enumeration of mortality and morbidity

PVD : peripheral vascular disease PVR : pulmonary vascular resistance

Qp : pulmonary blood flow

RA : right atrium

RCA : right coronary artery

RV : right ventricle SA : sinoatrial

SLE : systemic lupus erythematosus

SMC : smooth muscle cell

SpO₂ : peripheral capillary oxygen saturation STEMI : ST-elevation myocardial infarction

SV : stroke volume SVC : superior vena cava

SvO₂ : mixed venous blood oxygen saturation

SVR : systemic vascular resistance

TAPVC : total anomalous pulmonary venous connection

TEE : transesophageal echo

TGA : transposition of great arteries

TOF : tetralogy of Fallot

List of Abbreviations (Cont.)

TR : tricuspid regurgitation UAP : unstable angina pectoris

UK NCEPOD: united kingdom national confidential enquiry

into patient outcome and death

VR : venous return

VSD : ventricular septal defect

List of tables

Table	Title	Page
1	Valvular Heart Disease: Etiology	35
2	Common cause of valvular disease and	50
	multivalvular involvement.	
3	Classification of CHD	52
4	Relation between time since MI and	63
	risk of further MI	
5	Canadian Cardiovascular Society angina	64
	scale	
6	The 1980 ASA classification	74
7	Goldman's Cardiac Risk Index	77
8	Revised Goldman's Cardiac Risk Index	81
9	ACC/AHA clinical predictors of	90
	coronary risk	
10	METs for different activities	92
11	The Duke Activity Status index	93
12	New York Heart Association (NYHA)	94
	classification	
13	Grade of risk (with reported cardiac risk)	98
	with type of surgical procedure	
14	Complications of NIBP measurement	121

List of Figures

Fig.	Title	Page
1	Heart Chambers and valves	6
2	Blood Supply to the Heart	7
3	Cardiac cycle	12
4	Coronary artery and microvessel disease	26
5	Coronary atherothrombosis	29
6	TOF	58
7	ACC/AHA algorithm for perioperative	88
	cardiac assessment	
8	Algorithm for perioperative management	115

Introduction

Cardiac diseases-particularly ischemic, valvular and congential heart disease- are the medical illnesses most frequently encountered in anesthetic practice, and a major cause of perioperative morbidity and mortality. Management of patients with these diseases continues to challenge the ingenuity and resources of the anesthesiologist. Optimal anesthetic management of patients with cardiovascular disease requires a thorough knowledge of normal cardiac physiology, the circulatory effects of the various anesthetic agents, and the pathophysiology and treatment of these diseases (*Morgan et al.*, 2006).

Cardiovascular disease is a major cause of disability and premature death throughout the world, and contributes substantially to the escalating costs of health care (*WHO*, 2007).

Ischemic Heart Disease (IHD), otherwise known as Coronary Artery Disease (CAD), is a condition that affects the supply of blood to the heart. The blood vessels are narrowed or blocked due to the deposition of cholesterol plaques on their walls. This reduces the supply of O₂ and nutrients to the heart musculature, which is essential for proper functioning of the heart. This may eventually result in a portion of the heart being suddenly deprived of its blood supply leading to the death of

Introduction and Aim of The Work

that area of heart tissue. A multitude of factors are responsible for the development of IHD. The major risk factors are smoking, diabetes mellitus (DM) and high cholesterol levels. Valvular heart disease continues to be an important cause of perioperative morbidity and mortality. Valvular heart disease places a hemodynamic burden on the left and/or right ventricle which eventually leads to cardiac muscle dysfunction, congestive heart failure, or even sudden death. The most frequently encountered cardiac valve lesions produce pressure overload (mitral stenosis, aortic stenosis) or volume overload (mitral regurgitation, aortic regurgitation) on the left atrium or left ventricle. (*Hines & Marschall*, 2012)

Congenital heart disease (CHD) encompasses a seemingly endless list of abnormalities that may be detected in infancy, early childhood, or less commonly, adulthood. The incidence of CHD in all live births approaches 1%. The natural history of some defects is such that patients often survive to adulthood. Moreover, the number of surviving adults with CHD appears to be steadily increasing, possibly as a result of advances in medical treatment. An increasing number of patients with CHD may therefore be encountered during non-cardiac surgery. (*Morgan et al., 2006*)

Introduction and Aim of The Work

Preoperative risk assessment is an important step in reducing perioperative morbidity and mortality in patients undergoing noncardiac surgery. Successful perioperative evaluation is best achieved by combining an integrated multidisciplinary approach with good communication between patient, primary physician, anesthesiologist, the care consultant, and surgeon .The goal of appropriate preoperative evaluation and therapy should be to not only improve immediate periprocedural outcomes but also to improve long term clinical outcome. (Mukherjee et al., 2003).

Anesthetizing patients with cardiovascular disease is one of the greatest challenges facing the anesthesiologist. The constellation of anesthetic drug effects, the physiologic stresses of surgery, and underlying cardiovascular diseases complicate and limit the choice of anesthetic techniques for any particular procedure. The anesthesiologist's approach to the patient with cardiovascular disease is to select agents and techniques that will optimize the patient's cardiopulmonary function. The perioperative management of a patient with cardiovascular disease requires close cooperation between the surgeon, and anesthesiologist. Each cardiologist/internist, specialist has a unique knowledge base that complements the others. The approach should emphasize a continuum of care from the preoperative evaluation through the extended postoperative period. (Fuster et al., 2000).

Aim of the Work

This work aims to describe the most frequently encountered cardiac diseases in anesthetic practice and the optimal ways to manage, pre, intra and postoperatively.

Anatomy of the Heart

Structure of the Heart

The heart is a hollow, cone-shaped muscular pump located within the mediastinum of the thorax and resting upon the diaphragm (*Shier et al.*, 2007).

Size and Location of the Heart

Heart size varies with body size. However, an average adult's heart is generally about 14 cm long and 9 cm wide (*Shier et al.*, 2007).

The heart is located in the middle mediastinum, one of the divisions of the thoracic cavity, at the level of the thoracic vertebrae T_{5-8} . The heart rests on the diaphragm, beneath the sternum, bordered laterally by the lungs, posteriorly by the vertebral column, and anteriorly by the sternum. The heart's distal end extends downward and to the left, terminating as a bluntly pointed apex at the level of the 5^{th} intercostal space. (*Drake et al., 2005*).

Wall of the Heart

The wall of the heart is composed of three distinct layers; the outer layer, or epicardium, which protects the heart by reducing friction. The middle layer, or myocardium, which