Assessment of Some Medicinal Egyptian Plants as a Hepatoprotective Agent

Thesis

Submitted for the award of the degree of Ph.D.in Biochemistry

Presented By Wafik Abul Ella Mohamed Al-Khayat

Under Supervision of

Prof. Dr./ Shadia Abdel Hamid Fathy

Professor of Biochemistry
Faculty of Science - Ain Shams University

Prof. Dr./ Abdel-Naser Badawi Sengab

Professor of Pharmacognosy
Faculty of Pharmacy - Ain Shams University

Prof. Dr./ Fatma Farag Abdel Hamid

Professor of Biochemistry
Faculty of Science - Ain Shams University

Dr./ Naglaa Ahmed Samir Awad

Ass. Professor of Pathology Faculty of Medicine - Ain Shams University

> Faculty of Science Ain Shams University 2009

جامعة عين شمس كلية العلوم

رسالة دكتوراه

اسم الطالب: وفيق أبو العلا محمد الخياط

عنوان الرسالة: دراسة تأثير بعض النباتات الطبية المصرية كواقيات كبدية.

اسم الدرجة: دكتوراه

لجنة الإشراف:

(1) أ.د. / شادية عبد الحميد فتحى أستاذ الكيمياء الحيوية

بكلية العلوم - جامعة عين شمس

(2) أ.د. / عبد الناصر بدوي سنجاب أستاذ العقاقير الطبية

كلية الصيدلة - جامعة عين شمس

(3) أ.د. / فاطمة فرج عبدالحميد أستاذ الكيمياء الحيوية

كلية العلوم - جامعة عين شمس

(4) أ.د. / نجلاء أحمد سمير عوض أستاذ علم الأمراض المساعد

كلية الطب - جامعة عين شمس

تاريخ البحث : / / 200

الدراسات العليا:

ختم الإجازة : أجيزت الرسالة بتاريخ: / /

موافقة مجلس الكلية موافقة مجلس الجامعة / / 200 / /

200

جامعة عين شمس كلية العلوم

_

اسم الطالب: وفيق أبو العلا محمد الخياط

الدرجة العلمية: دكتوراه الفلسلفة في الكيمياء الحيوية

القسم: الكيمياء الحيوية

الكلية : العلوم

الجامعة : عين شمس

سنة التخرج: 1986

سنة المنح: 2009

Approval Sheet

Name of Candidate: Wafik Abul Ella Mohamed Al-Khayat

This thesis has been approved for submission by:

1- Prof. Dr./ Shadia Abdel Hamid Fathy

Professor of Biochemistry Faculty of Science - Ain Shams University Signature

2- Prof. Dr./ Abdel-Naser Badawi Sengab

Professor of Pharmacognosy Faculty of Pharmacy - Ain Shams University Signature

3- Prof. Dr./ Fatma Farag Abdel Hamid

Professor of Biochemistry Faculty of Science - Ain Shams University Signature

4- Prof. Dr./ Naglaa Ahmed Samir Awad

Ass. Professor of Pathology Faculty of Medicine - Ain Shams University Signature

Chairman of Department of Biochemistry Faculty of Science, Ain Shams University

Prof. Dr. Amr Karim

جامعة عين شمس كلية العلوم

شــكر

أشكر السادة الأساتذة الذين قاموا بالإشراف وهم:

- (1) أ.د. / شادية عبد الحميد فتحى أستاذ الكيمياء الحيوية بكلية العلوم – جامعة عين شمس
- (2) أ.د. / عبد الناصر بدوي سنجاب أستاذ العقاقير الطبية كلية الصيدلة جامعة عين شمس
 - (3) أ.د. / فاطمة فرج عبدالحميد أستاذ الكيمياء الحيوية كلية العلوم جامعة عين شمس
 - (4) أ.د. / نجلاء أحمد سمير عوض أستاذ علم الأمراض المساعد كلية الطب جامعة عين شمس

كما أتقدم بالشكر إلى: قسم الكيمياء الحيوية - كلية العلوم - جامعة عين شمس. مركز البحوث الطبية - كلية الطب - جامعة عين شمس.

I declare that this thesis has been composed by myself and that the work of which is a record has been done by myself. It has not been submitted for a degree at this or any other university.

Wafik Abul Ella Mohamed Al-Khayat

List of Contents

ra	ge
Abstract a	
Acknowledgement	
List of abbreviations II	
List of tables	
List of figuresV	
Introduction1	
Aim of the work	
Review of Literature	
I.1.The liver and liver Disease	
I.1.1 Anatomy of Normal Liver	
•	
I.1.1 a. Anatomy	
I.1.2. Biliary System	
I.1.2a. Ducts	
I.1.2b.Duct System	
I.1.2c. Biliary Flow	
I.1.2d.The Gall Bladder	
I.2.Clinical Approach to Liver Diseases	
I.2.1.Geographic Distribution	
I.2.2. Liver Diseases	
I.2.2a. Acute Hepatitis	
I.2.2b. Acute (Fulminant) Hepatic Failure	
I.2.2c. Chronic Hepatitis	
I.2.2d. Primary Biliary Cirrhosis	
I.2.2e. Hepatocellular Carcinoma	
I.2.2f. Alcoholic Liver Disease	
I.3.Chemically-Induced Liver Damage	
I.3.1. CCl ₄ -Induced Liver Damage	
1.3.2 Mechanism of Action of CCl ₄	7
I.3.3. Lipid Peroxidation	
1.3.3.a Lipid Peroxidation Mechanism	
1.3.3.b Lipid Peroxidation by products	2
1.3.3.c Lipid Conjugated Dienes	3
1.3.3.d Liver Lipid Peroxidation	4
I.3.4. Auto-Oxidation 3:	5
1.3.5 Membrane Damaging Factors	6
I.4. Xenobiotics	
1.4.1 Xenobiotic Metabolism	8
1.4.2 Permeability Barriers and Detoxification	
1.4.3 Phases of Detoxification	
I.4.4. Examples of Xenobiotics-Induced Lipid Peroxidation	
I.5 Anti-oxidants	
L5.1 The Oxidative Challenge in Biology: 4	

1.5.2 Endogenous Anti-oxidants	
1.5.3 Anti-Oxidant Classification	
1.5.3.a Naturally Occurring Anti-Oxidants	64
1.5.3.b Silymarin	65
1.5.3.c Vitamin C (Ascorbic acid)	
1.5.3.d Vitamin E	
1.5.3.e Carotenoids	
1.5.3.f Selenium	
1.6 Medical Plants	
1.6.1 Parsly	
1.6.2 Peppermint	
1.6.3 Olive	
1.6.4 Centaurea aegyptiaca	
1.6.5 Carrot (Daucus carota L.)	
I.7. Biochemical Parameters	
I.7.1. Serum Aminotransferases	
I.7.2. Acetyl cholinestrase (AChE)	
I.7.3. Serum Urea	
I.7.4. Albumin	
II. Materials & Methods	
II.1. Materials	
II.1.1. Animals	
II.1.2 Exprimental design	
II.1.2.a Animal groups	
II.1.2.b Samples collection	
II. 2 Methods	
II.2.1 Determination of serum AST	110
II.2.2 Determination of serum ALT	
II.2.3 Determination of serum urea	
II.2.4 Determination of serum lactate dehydrogenase	
II.2.5 Determination of serum gamma-glutmyl transferase	
II.2.6 Determination of serum albumin	
II.2.7 Determination of serum Acetylcholinestrase	
II.2.8 Extraction of genomic-DNA from rat tissue	
II.2.9 Histopathological preparation	
II.3 Statistical methodology	120
Results	121
Discussion	154
Summary	170
Conclusion and recommendations	175
References	176
Arabic summary	

ABSTRACT

The vast majority of people on this planet still rely on their traditional material medica (medicinal plants and other materials) for their everyday health care needs. It is also a fact that one quarter of all medical prescriptions are formulations based on substances derived from plants or plant-derived synthetic analogs, and according to the WHO, 80% of the world's population, primarily those of developing countries, rely on plant-derived medicines for their healthcare.

The current study was conducted to assess the hepatoprotective activity of some medicinal antioxidant plants against carbon tetrachloride (CCl₄) intoxication in liver albino rats. *Centaurea aegyptiaca*, red and yellow carrot were the medicinal antioxidant plants of choice in the present study.

In the present study, 144 adult male albino rats, weighing from 150-200 gm, were classified into two main groups. Group A (normal control group) and group B (liver injured group). *Group A:* 24 rats were left to serve as normal basic controls and were subclassified into four subgroups (A1, A2, A3 & A4).

Group B: 120 rats were administered with CCl₄ in a dose of 1 mL/kg twice a week for 5 weeks and were divided into 4 subgroups: Group B1: treated with CCl₄ (+v) control, Group B2: treated with Centaurea aegiptiaca + CCl₄, Group B3: treated with red carrot + CCl₄ and Group B4: treated with yellow carrot + CCl₄. The results of the current study revealed

that the mean serum levels of AST, ALT, LDH, and GGT of carbon tetrachloride (CCl₄) treated (+ve) control group are highly significantly (p <0.01) increased compared to that of untreated (-ve) control groups along the study duration. Meanwhile, the mean serum levels of AST, ALT, LDH, and GGT of *Centaurea aegiptiaca* protected groups are highly significantly (P<0.01) decreased compared to that of CCl₄ treated (+ve) control group. In the red and yellow carrot groups, the mean serum levels of AST, ALT, LDH, and GGT ranged between significant (P<0.05) and highly significant (P<0.01) decrease compared to that of carbon tetrachloride (CCl₄) treated (+ve) control.

On the other hand, the mean serum level of AChE activities of *Centaurea aegiptiaca*, red and yellow carrot protected groups are highly significantly (p<0.01) increased compared to the carbon tetrachloride (CCl₄) treated group throughout the study duration.

In conclusion, the selected medicinal plants (*Centaurea aegyptiaca*, red carrot and yellow carrot) have efficient hepatoprotective effect against carbon tetrachloride (CCl₄) hepatotoxicity.

Further studies are needed to identify and characterize the entire spectrum of mediators that energize the antioxidant effects of these plants specially on the cellular and molecular levels.

Acknowledgement

First and farmost thanks to **ALLAH** who allowed and helped me to accomplish this work.

I wish to express my deepest appreciation and gratitude to **Prof. Dr. Shadia Abdel-Hamid Fathy**, Prof. of Biochemistry, Faculty of Science, Ain Shams University, whose interest in the subject was a stimulating factor that helped me in my choice of this particular subject. Also, I would like to express my deepest thanks for her kind supervision, constructive encouragment, faithful guidance and valuable suggestions, as well as her moral support throughout the whole work.

I am extremely grateful to **Prof. Dr. Abd El-Nasser Badawi Singab**, Prof. of Cognosy, Faculty of Pharmacy, Ain Shams University, for his generous help, kind advice, sincere support, constructive criticism, time and effort that contributed to the success of this work.

I am greatly indebeted and grateful to **Prof. Dr. Fatma Farag Abdel Hamid**, Prof. of Biochemistry, Faculty of Science, Ain Shams University, for her instructive guidance, sincere superivision, encouragement, time and effort during the production of this thesis. This is besides her sincere directions and her energetic help in the details of this work.

I would like to express my deepest thanks and sincere appreciation to Assist. Prof. Dr. Naglaa Ahmed Samer Awad, Assistant Professor of Pathology, Faculty of Medicine, Ain Shams University, for her support and encouragment. This is besides her sincere directions and her energetic help in the details of this work.

I would also like to thank **Dr. Mohamed Kamel Abou Golayel**, Lecturer of Biochemistry, Medical Research Centre, Ain Shams University Hospitals, for his kind and sincere support throughout the accomplishment of this thesis. This is besides his effort and time that contributed to the success of this work

Last but not least, I would like to dedicate this work to my **Partent's** who believed in me and gave me the endless strength and support. Also, I would like to dedicate this work to my **Brothers**, my **Wife** and my **Kids**.

List of Abbreviations

$\overline{O_2}$	Superoxide radical
AChE	Acetylcholinestrase
ALT	Alanine aminotransferase
ASH	alcoholic steatohepatitis
AST	Aspartate aminotransferase
AVED	Ataxia and vitamin E deficiency
B[a]P	Benzo [a] pyrene
Ca ⁺⁺	Calcium
САН	Chronic active hepatitis
ССК	Cholecystokinin
CCl ₃	Trichloromethyl radical
CCl ₄	Carbon tetrachloride
C-I	Type I Collagen
C-II	Type II Collagen
C-III	Type III Collagen
СР	Ceruloplasmin
Cu	Copper
Fe	Iron
FLD	Fatty liver disease
GGT	Gamma glutamyl transferase
GLDH	Glutamate dehydrogenase
GSHPx	Glutathione Peroxidase
GSSG	Oxidized glutathione
GST	Glutathione S-Transferase

H_2O_2	Hydrogen Peroxide
HOCl	Hypochlorous Acid
ICDH	Iso-citrate dehydrognase
LOOH	Lipid hydroperoxide
MRP	Multidrug Resistance Protein
NAD	Nicotineamide adenine dinucleotide
NADH	Reduced B-nicotinamide adenine dinucleotide
NASH	Non-Alcoholic Steatohepatitis
Ni	Nickel
NiCl ₂	Nickel chloride
ОН	Hydroxyl Radical
PBL	peripheral blood lymphocytes
PBS	Phosphate-buffered saline
PCBS	Polychlorinated biphenyls
$\mathbf{Q_0}^-$	Conenzyme Q ₀
ROS	Reactive oxygen species
SDS	Sodium dodecyl sulfate
SLE	Systemic Lupus Erythematosus
SODs	Superoxide Dismutases
SSB	Single Strand Break
TE	Tris EDTA buffer
UQ	Ubiquinone

List of tables

<u>Page</u>
Table 1: Antioxidants concentration in body fluids and tissues 53 -
Table 2: Parameters of pathological features 119 -
Table 3: Serum levels of liver profile of CCl ₄ treated 121 -
Table 4: Serum levels of liver profile of <i>Centaurea</i> 123 -
Table 5: Serum levels of liver profile of <i>red carrot</i> 129 -
Table 6: Serum levels of liver profile of yellow carrot 135 -
Table 7: DNA levels of all studied groups (ng/ ml) 141 -
Table 8: Inflammation grades of rats at the end of the study 148 -
Table 9: Necrosis grades of rats at the end of the study 149 -
Table 10: Steatosis grades of rats at the end of the study 150 -
Table 11: Fibrosis grades of rats at the end of the study 151 -

List of figures

<u>Page</u>
Figure 1: Biliary System (Seeley et al., 2000) 8 -
Figure 2: The Gallbladder (Seeley et al., 2000)9 -
Figure 3: Mechanism leading to hepatic steatosis 22 -
Figure 4: Mechanism of fatty liver disease (FLD) 23 -
Figure 5: Phases I and II of the metabolism of a lipophilic xenobiotic 43 -
Figure 6: Proposed model of breaking of tolerance in PBC 45 -
Figure 7: The three structural components of silymarin: silibinin, silydianine, and silychristine 66 -
Figure 8: Structural Formula L-Ascrobic acid71 -
Figure 9: Structural formula of dehydroascorbic acid71 -
Figure 10: Structural formula of RRR α -Tocopherol80 -
Figure 11: Structural formula of different derivatives of Tocopherol81 -
Figure 12: Simplified carotenoid synthesis pathway91 -
Figure 13: Wild <i>Centaurea aegyptiaca</i> from Sinai 97 -
Figure 14: Different wild carrot colors 102 -
Figure 15: Mean serum levels of (AST) in the CCl ₄ treated and Centaurea aegyptiaca protected groups 125 -
Figure 16: Mean serum levels of (ALT) in the CCl ₄ treated and Centaurea aegyptiaca protected groups 125 -
Figure 17: Mean serum levels of (LDH) in the CCl ₄ treated and Centaurea aegyptiaca protected groups 126 -
Figure 18: Mean serum levels of (GGT) in the CCl ₄ treated and Centaurea aegyptiaca protected groups 126 -