

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-١٠ في درجة حرارة من ٢٥-١٥ مئوية ورطوبة نسبية من ٢٠-١٠ To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

بالرسالة صفحات لم ترد بالاصل

المرت المالية

Study of MTHFR Gene Mutation in Normal Mothers and in Mothers with Down syndrome Children

Thesis submitted for fulfillment of the Master degree in Pediatrics

By

Ola Hossny El-Said Mohmed (M.B.B.Ch)
National Research Centre

Supervisors

Dr. Soad Ishak Wahba

Prof. Of Pediatrics
Faculty of Medicine,
Cairo University

Dr. Nagwa Abdel-Meguid Mohamed

Prof. Of Genetics and Head of Research on Children with Special Needs Department National Research Centre, Cairo

Dr. Hanna Mohamed Abou El Ghar

Lecturer of Pediatrics Faculty of medicine Cairo University

Cairo University
Faculty of Medicine
October 2002

La James Jam

بسمراتك الرحير

بناء على موافقة الأستاذ الدكتور / نائب رئيس الجامعة بتاريخ ٢٠٠٢/٨/٨م اجتمعت اللجنة المشكلة من الأسائذة:

1 ـ أ.د./ سعاد إسعاق وهبة (عن المشرفين)
7 ـ أ.د./ سوسن حسن نمبد الهادي (ممتحن داخلي)
7 ـ أ.د./ مصطفى كامل العوضي (ممتحن خارجي)

بقاعة الدور الثاني لمناقشة علنية لرسالة الماجستير في طب الأطفال المقدمة من الطنيبة / علا حسنى السيد محمد على.

وذلك في تمام الساعة (١٢) صباحا يوم (الأحد) الموافق ٢٠٠٢/١٠/٢م. عنوان الرسالة :

دراسة الطفرة في جين ميثلين تتراهيدر و فوليتردكتيز في الأممات العاديين والأممان لأطفال بمتلازمة داون

الملخص:

تم تحديد وجود الطفرة في الأمهات العاديين والأمهات لأطفال بمتلازمة داون، ولـــم يثبت وجود الطفرة مما يدل على أن هذه الطفرة ليست عامل خطورة لزيادة نسببة الاصابــة بطفل منغولي.

بتحليل النظام الغذائى لأمهات الأطفال المصابين بمتلازمة داون تبين أنهن يتساولن حمض الفوليك بكميات أقل من الحد الأمثل مما يثبت أن نقص حمض الفوليك يزيد نسبة الاصابة بطفل منغولى.

كذلك تم تحديد نسبة الحمض الأميني الهوموسيستايين في دم الأمهات كدلالـــة علــى نسبة حمض الفوليك في الدم، وكان في الحدود الطبيعية مما يثبت أنه يتأثر بعوامل أخرى غير حمض الفوليك.

وترى اللجنة قبول البحث

c-y. Ve.

11/C

(et)

Acknowledgement

My great thanks and all my respects to Prof. Dr. Soad IshaK, Prof. of pediatrics, Faculty of Medicine, Cairo University for her kind care, encouragement and guidance. She enriched me with her experience and continuous help.

My profound thanks and gratitude to Prof. Dr. Nagwa Abdel-Meguid head of the Dept. of Research on children with special needs, National Research Centre for her great support, continuous encouragement and valuable observations. She was interested in this work and enriched me with constructive observations. Dr, Nagwa did her best to get this work in the final form. Her help and kindness are always kept in mind.

My deep thanks to Dr. Hanna Abou El Ghar for her kindness, cooperation and sound advice.

I also express my gratitude to Dr. Ahmed Dardir Researcher of pediatrics, National Research Centre for his sound observations, valuable help and encouragement.

Special thanks to all members of the Biomedical Technology

Department, National Research Centre for their great help and continuous

cooperation.

Contents

1. Introduction	1
1.1. Aim of Work	3
2. Literature Review	3
2.1. Chromosomal Background	3
2.2. Biochemistry in Down syndrome	9
2.3. Medical aspects	12
2.4. Chromosome 21 and genes	19
2.5. MTHFR Mutation and Down syndrome	27
3. Patients and Methods	40
3 .1. Patients	40
3 .2. Methods	41
4. Results	50
5 . Discussion	65
6 . Conclusion and Recommendations	91
7 . Summary	92
& . References	9.
9 . Arabic summary	107

List of Tables

Table 1: Frequency of trisomy 21 at birth and at prenatal diagnosis in relation to maternal age

Table 2. Distribution (%) of Associated Anomalies Among the Studied Down syndrome Children

Table 3. Analysis of Maternal and Environmental risk factors

Table 4. Nutritional history and vitamin supplementation of Down syndrome mothers

Table 5. Blood homocysteine concentration of the studied D.S. mothers and control mothers

List of Figures

- Fig.1. Action of MTHFR in the remethylation of homocysteine to methionine.
- Fig.2. Pedigree of case no (3)
- Fig. 3. Non denaturating agarose gel (3%) showing PCR products

List of Abbreviations

AAI Atlantoaxial instability
AML Acute myeloid Leukemia
AML Acute myeloid leukemia

APP Amyloid beta (A4) precursor protein

bp Base pair C Cytosine

CAF1A Chromatin assembly factor 1, p60 subunit

CBS Cystathionine beta synthase

COL6A1 Collagen V1, alpha-1 polypeptide

CRYA1 Crystallin, alpha polypeptide

D.S. Down Syndrome

DHA Docasahexaenoic acid

ETS2 Oncogene ETS-2

FPIA Fluorescence Polarization Immunoassay
GLUR5 Glutamate receptor, ionotropic, kainate

HCY Homocysteine

IFNAR Interferon (alpha, beta), receptor for

IQ Intelligence Quotient

Kb Kilo base MB Mega Base

MMI Maternal Meiosis I
MMII Maternal Meiosis II

MTHFR Methylenetetrahydrofolate reductase

NTDs Neural Tube Defects
ORF Open reading fragment

PFKL Phosphofructokinase, liver type

SAH S-adenosylhomocysteine SAM S-adenosylmethionine SOD Superoxide dismutase

T Thymine

Abstract

The main aim of the present study was detection of the frequency of MTHFR gene mutation in Egyptians as a risk factor for nondisjunction. Mothers were subjected to complete nutritional history, estimation of homocysteine level in blood and study of MTHFR mutation at site 677.

The results showed absence of MTHFR gene mutation in D.S. mothers and control mothers. Folate intake was significantly low in mothers with D.S. children. This indicates that sufficient folate (400 µg/d) is important preventive strategy, for nondisjunction. Blood homocysteine was normal in both D.S. mothers, which indicate that homocysteine is affected by other factors than folate intake.

Key words:

Down syndrome, MTHFR gene, mutation, Homocysteine, Folate

Introduction And Aim of work

1. Introduction

The story of Down syndrome began in 1866, when a physician, John Langdon Down published an essay in England. He described a set of children with common features who were distinct from other children with mental retardation. He made the first distinction between children who were cretins and what he referred to as "Mongoloids. In the 1970s, an American revision of scientific terms called it simply "Down syndrome,"

The incidence differs at different maternal ages. It is 1/1500 at 20 years, 1/1350 at 25 years, 1/900 at 30 years, 1/380 at 35 years, 1/240 at 37 years, 1/150 at 39 years, 1/85 at 41 years, 1/28 at 45 years, (Cheffins et al., 2000).

The overall birth prevalence of Down syndrome is 1 in 700 live births, (Cheffins et al., 2000). The incidence at conception is much greater, but more than 60% are spontaneously aborted and at least 20% are stillborn. It is a leading genetic cause of mental retardation. About 80% of trisomy 21 conceptions result in pregnancy loss, (Freeman et al., 1996). Despite its prevalence and consequence, the biochemical and molecular mechanisms that predispose to maternal nondisjunction are not understood. Recent evidence indicates that abnormal recombination during the meiosis I prophase is associated