

Ain Shams University Faculty of Engineering Structural Engineering Department

Lateral Torsional and Distortional Buckling of Coped Beams with Different End Conditions

By

Seham Ahmed El -Sa'eed Mohamed

M. Sc. Civil Engineering Ain Shams University

A Thesis Submitted in Partial Fulfilment for the Requirements of the Degree of Doctor of Philosophy in Civil Engineering (structures)

Supervised by

Prof. Dr. **Abdelrahim Khalil Dessouki**

Professor of Steel Structures Structural Engineering Department Ain Shams University Dr.

Sherif Abdel-Basset Ibrahim

Associate Professor Structural Engineering Department Ain Shams University

Abstract of PH. D. Thesis submitted by: Seham Ahmed El -Sa'eed Mohamed Title: "Lateral Torsional and Distortional Buckling of Coped Beams with Different End Conditions"

Supervisors: 1) Prof. Dr. Abdelrahim Khalil Dessouki

2) Dr. Sherif Abdel-Basset Ibrahim

ABSTRACT

Elastic lateral torsional buckling was investigated by a number of researchers. They proposed a set of interaction equations to evaluate the elastic lateral torsional buckling capacity of coped steel beams based upon the interaction of lateral torsional buckling of coped "T-section" and un-coped region. However, very little theoretical data are available for inelastic lateral torsional buckling of coped I-beams. This research discusses both elastic and inelastic lateral torsional buckling of coped built-up steel I-beams.

A brief introduction and literature review of the previous work in the field of lateral buckling of coped beams is presented. As well, different types of reinforcing to increase the buckling capacity of coped region are presented.

A total of six full-scale tests were conducted to investigate the inelastic lateral torsional capacity of coped beams. The main test parameters included in the experimental program are the aspect ratio of cope depth and cope length.

Verification of numerical models versus problems chosen from previous experimental work is performed and presented. The finite element program used to solve the current problem is ANSYS V.11. The accuracy of the adopted analytical model is studied. A comparison between the experimental and finite element models is presented.

A parametric analysis to study the effect of coping on the buckling capacity of beams was conducted. Different numerical –analytical models are presented to study the effect of coping. A proposed method in case of inelastic lateral torsional buckling has been introduced. A comparison between the modified equation for coped specimen and the experimental results is presented

Different methods of retrofitting and strengthening of coped beams region are presented, like adding horizontal stiffeners or vertical stiffeners or both. A parametric study is performed to discuss the effect of stiffening on the buckling capacity of coped beams, and a simplified mathematical model is also introduced for the strengthened beam capacity.

Finally, a summary of the work carried out in this thesis, along with the general conclusions obtained from this study and recommendations for future research in this field are presented.

To Our Generous Prophet and His Gracious Family (Ahl-Elbayt)

EXAMINERS COMMITTEE

1.	Prof. Dr. Adel Helmy Salem Professor of Steel Structures Structural Engineering Department Ain Shams University	()
2.	Prof. Dr. Fouad Helmy Fouad Professor of Steel Structures Structural Engineering Department Alabama University – United States of A	()
3.	Prof. Dr. Abdelrahim Khalil Dessouki Professor of Steel Structures Structural Engineering Department Ain Shams University	()
4.	Dr. Sherif Abdel-Basset Ibrahim Associate Professor Structural Engineering Department Ain Shams University	()

STATEMENT

This dissertation is submitted to Ain Shams University for the degree

of doctor of philosophy in Structural Engineering.

The work included in this thesis has been carried out by the author in

the Department of Structural Engineering, Ain Shams University, from

September 2008 to 2013.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Date : / /

Signature:

Name : Seham Ahmed El -Sa'eed Mohamed

ii

ACKNOWLEDGEMENTS

First and foremost, praise and thanks to Almighty Allah, the Most gracious and the Most Merciful.

The author would like to express her deepest gratitude and appreciation to Prof. Dr. Abdelrahim Khalil Dessouki for his invaluable guidance and support.

The author also greatly appreciates the help, guidance and support provided by Dr. Sherif Abdel-Basset Ibrahim throughout all the stages of research.

The author wishes to express her thanks to Energya factory-(Sewedy steel) for assisting during experimental research stage and manufacturing of experimental specimens.

Finally, the author would like to express her heartfelt appreciation to her father, her beloved mother and whole family for lots of support.

ABSTRACT

Elastic lateral torsional buckling was investigated by a number of researchers. They proposed a set of interaction equations to evaluate the elastic lateral torsional buckling capacity of coped steel beams based upon the interaction of lateral torsional buckling of coped "T-section" and un-coped region. However, very little theoretical data are available for inelastic lateral torsional buckling of coped I-beams. This research discusses both elastic and inelastic lateral torsional buckling of coped built-up steel I-beams.

A brief introduction and literature review of the previous work in the field of lateral buckling of coped beams is presented. As well, different types of reinforcing to increase the buckling capacity of coped region are presented.

A total of six full-scale tests were conducted to investigate the inelastic lateral torsional capacity of coped beams. The main test parameters included in the experimental program are the aspect ratio of cope depth and cope length.

Verification of numerical models versus problems chosen from previous experimental work is performed and presented. The finite element program used to solve the current problem is ANSYS V.11. The accuracy of the adopted analytical model is studied. A comparison between the experimental and finite element models is presented.

A parametric analysis to study the effect of coping using different end conditions on the buckling capacity of beams was conducted. Different models numerical – analytical are presented to study the effect of coping.

A proposed method in case of inelastic lateral torsional buckling has been introduced. A comparison between the modified equation for coped specimen and the experimental results is presented

Different methods of retrofitting and strengthening of coped beams region are presented, like adding horizontal stiffeners or vertical stiffeners or both. A parametric study is performed to discuss the effect of stiffening on the buckling capacity of coped beams, and a simplified mathematical model is also introduced for the strengthened beam capacity.

Finally, a summary of the work carried out in this thesis, along with the general conclusions obtained from this study and recommendations for future research in this field are presented.

TABLE OF CONTENTS

Examiners Committee	i
Statement	ii
Acknowledgements	iii
Abstract	iv
Table of Contents	vi
List of Tables.	xii
List of Figures.	XV
Notations	xxxiii
Abbreviations	XXXV
CHAPTER 1: INTRODUCTION	
1.1 Introduction.	1
1.2 Differences with other research projects	2
1.3 Effect of cope length and depth on the coped beams	2
1.4 Thesis outline	3
CHAPTER 2: LITERATURE REVIEW	
2.1 Introduction	7
2.2 Previous research on behavior of coped beams	8
2.2.1 Ajaya K. Gupta (1984)	8
2.2.2 Cheng and Yura (1988)	9
2.2.3 Cheng and Yura (1988)	11
2.2.4 Michael and Lam (1997)	12
2.2.5 Yamb and Chengc (2000)	12
2.2.6 Franchuk, et. al. (2002-2004)	14

2.2.7 Yam, et. al. (2003)
2.2.8 Maljaars and Steenbergenb (2004)
2.2.9 Maljaars et al., (2005)
2.2.10 Michael et al, (2007)
2.2.11 Michael et al., (2007)
2.2.12 Cem Topkaya (2007)
2.2.13 Michael and Lam (2007)
2.2.14 Feng Weia, et al. (2010)
2.2.15 Michael, et al., (2011)
2.2.16 Michael and Chung, (2013)
2.2.17 Michael, et al., (2014)
2.3 Summary
3.1 Introduction
3.2 Test program
3.2.1 Test specimens
3.2.2 Test setup
3.2.3 Instrumentation
3.2.4 Specimens preparations
3.2.5 General test procedure
3.3 Test results
3.4 Effect of cope length on lateral torsional buckling strength
of beams
3.5 Effect of cope depth on lateral torsional buckling strength of
beams
3.6 Summary and conclusions

<u>CH</u>	APTER	4:	NONLINEAR	FINITE	ELEMENT
MC	DELING	TEC	HNIQUE AND V	<u>ALIDATIO</u>	<u>N</u>
4.1	Finite ele	ment	model and verificat	ion	
	4.1.1 In	trodu	ction		
	4.1.2 Fi	nite e	lement modeling		
	4.1.3 Be	ounda	ry conditions and l	oading	
	4.1.4 M	ateria	l properties		
	4.1.5 A	nalysi	s procedure		
	4.1.5.	1 For	rce control		
	4.1.5.	2 Dis	splacement control.		
	4.1.5.	3 Arc	c-Length control		
	4.1.6 V	erifica	ation of experiment	al models	
	4.1.6.1	Verit	fication of specime	ns tested by	Cheng et. al.
		(198	4)		
	4.1.6.2	Verif	fication of specime	ens tested by	J. Maljaars,
		et. al	. (2004- 2005)		
	4.1.6.3	Veri	fication of specim	ens tested	by Ajaya K.
		Gupt	a (1984)		
	4.1.6.4	Verit	fication of specim	ens tested	by M. Lam,
		M.Y	am, V.P. Iu, Cheng	, (2000)	
4.2	Finite ele	ment	model of test specia	mens (curren	ıt
exp	erimental s	study			
4.3	Comparis	son be	tween finite elemen	nt and test re	sults
4.4	Summary	and c	conclusions		
СН	APTER 5	. PAL	RAMETRIC STU	ΟV	
	Introducti			- 1	

.2 Finite element modeling		
5.3 Finite element meshing.	117	
5.4 Boundary conditions and loading	117	
5.5 Material Properties	118	
5.6 Influence of support conditions on lateral torsional buckling	118	
5.6.1 Description of the numerical models	120	
5.6.2 Studying the influence of end conditions for different cope parameters	121	
5.6.2.1 Reduction of the critical in-elastic buckling loads for un		
coped beams with different end conditions	122	
5.6.2.2 Reduction of the critical in-elastic buckling loads for		
coped beams with different end conditions	122	
5.6.2.3 Reduction of the critical in-elastic buckling loads of coped		
beams due to change in cope lengths with different end	100	
conditions	123	
5.7 Analysis results for parametric study of clip angle connection.	124	
5.7.1 Effect of the coped length	126	
5.7.2 Effect of the coped depth	127	
5.8 Variation of Load location (applied on bottom flange)	129	
5.8.1 Effect of cope length when the load is applied at the		
bottom flange	130	
5.8.2 Effect of cope length when the load is applied at the		
bottom flange	130	
5.9 Summary	131	

CHAPTER 6: PROPOSED EQUATIONS FOR INELASTIC	
LATERAL TORSIONAL BUCKLING STRENGTH	
6.1 Introduction	176
6.2 Design and behavior of coped beam by Cheng et al. [23]	176
6.3 AISC code: Inelastic lateral torsional buckling	178
6.4 Proposed analytical method to evaluate LTB of coped beams	179
6.4.1 Column Analogy Model with one central elastic	
lateral spring	180
6.4.2 Column Analogy Model with two central elastic	
lateral springs	181
6.5 Effect of flange stiffness to lateral spring stiffness"n" on	
lateral torsional buckling capacity	183
6.5.1 Effect of cope depth "d _c " on factor" n"	183
6.5.2 Effect of beam length "L _b " on factor" n"	183
6.6 Comparison between parametric analysis results and	
proposed method	184
6.7 Modification of Cheng et al ^[23] equation	184
6.8 Comparison between the design method and the	
experimental results	186
6.9 Comparison between design method and the finite element	
result for the experimental models	187
6.10 Effect of cope length	188
6.11 Effect of cope depth	188
	189
CHAPTED 7. INCLASTIC LATERAL TORGONAL	

CHAPTER 7: INELASTIC LATERAL TORSIONAL BUCKLING STRENGTH OF STIFFENED COPED BEAMS

7.1 Introduction	208
7.2 Finite element modeling	208
7.3 Boundary conditions and loading	208
7.4 Material properties	209
7.5 Strengthening and stiffening technique of coped I-beams	209
7.6 Finite element modeling of stiffened test specimens	210
7.6.1 Effect of horizontal stiffeners on test specimens	211
7.6.2 Effect of adjoining horizontal and vertical	
stiffeners on test specimens	212
7.7 Parametric study for strengthened models	213
7.7.1 Effect of horizontal stiffeners only	213
7.7.2 Effect of adding horizontal stiffeners extended	
beyond the copes	214
7.7.3 Effect of adding vertical stiffener only	215
7.7.4 Effect of providing horizontal and vertical	
stiffener	216
7.8 Interaction equation developed for stiffened coped beams	218
7.9 Summary	219
CHAPTER 8: SUMMARY, CONCLUSIONS And	
<u>RECOMMENDATIONS</u>	
8.1 Summary	244
8.2 Conclusions	246
8.3 Recommendations for future work	248
APPENDICES	249
REFERENCES	290

LIST OF TABLES

CHAPTER 2:

2.1 Cross-Section Dimensions of Section and Cope Details	
tested by Jung-June R. Cheng and Joseph A. Yura in (1988)	28
2.2 The dimensions and cope details for the coped I-beams	
tested by C. C. Lam and J. J. R. Chen in (2000)	28
2.3 Cross-Section Dimensions of Section and Cope Details	
tested by Michael C. H. Yam and J. J. R. Cheng in (2003)	28
2.4 The specimen dimensions tested by J. Maljaarsa, H.M.G.M.	
Steenburgen, R. Abspoelcin (2005)	29
2.5 The specimen dimensions and copes details tested by	
Michael C.H. Yama, Y.C. Zhongb in (2007)	29
2.6 Dimensions of test specimens tested by Michael C.H. Yam	
and K. F. Chung in (2007)	30
2.7 Cross-sectional dimensions of the test specimens tested by	
Feng Weia, Michael C.H. Yamb, (2010)	31
CHAPTER 3:	
3.1 Copes details of specimens (dimensions are in mms)	51
3.2 Test results of specimens and comparison with uncoped	
results	51
3.3) Corresponding stress at coping corner	51
CHAPTER 4:	
4.1 Dimensions of coped beam specimens tested by Cheng et.al.	
(1984)	90
4.2 Comparison between ultimate loads for present work and	