## Potential New Tumor Markers in Early Detection and Surveillance of Cancer Bladder

#### **Essay**

Submitted for Partial Fulfillment for the Requirements of Master Degree in Clinical Oncology and Nuclear Medicine

#### By

Ehab Nagy Mohamed Abd El Aziz Serag El-Din M.B., B. CH. Ain Shams University

## Supervised by

## Ass. Prof. Dr. Khaled El Husseiny Nasr

Associate Professor of Clinical Oncology & Nuclear Medicine Faculty of Medicine, Ain Shams University.

## Ass. Prof. Dr. Nagy Sami Gobran

Associate Professor of Clinical Oncology & Nuclear Medicine Faculty of Medicine, Ain Shams University.

#### Dr. Mohamed Yassin Mostafa

Lecturer of Clinical Oncology & Nuclear Medicine Faculty of Medicine, Ain Shams University.

Faculty of Medicine
Ain Shams University
2015



سورة البقرة الآية: ٣٢



First, I wish to express my deep thanks, sincere gratitude to

## ALLAH

who always helps me, care for me and grunted me the ability to accomplish this thesis. I would like to express my deepest gratitude, thanks and gratefulness to Ass. Prof. Dr. Khaled El Husseiny Nasr, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine- Ain Shams University, for his enthusiastic support, encouragement valuable scientific advices, and great help through out of the accomplishment of this work. May God bless him.

My sincere thanks to Ass. Prof. Dr. Nagy Sami Gobran, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine- Ain Shams University, for his kind and meticulous supervision, support, help, valuable supervision all through the work.

Many thanks, and sincere gratitude to **Dr. Mohamed Yassin Mostafa**, Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of Medicine- Ain Shams University, for her kind supervision encouragement and meticulous revision of this work.

Words can never express my sincere thanks to my parents, my wife for their generous support and continuous encouragement.

I would like to express my overlasting gratitude to all my dear colleagues, friends and all who offered me any kind of help, encouragement wishing them the best of all.



Ehab Nagy Serag El-Din

## List of Contents

| Subject                                          | Page |
|--------------------------------------------------|------|
| List of Abbreviations                            | I    |
| List of Tables                                   | III  |
| List of Figures                                  | IV   |
| Introduction                                     | 1    |
| Aim of the Work                                  | 6    |
| Review of Literature                             |      |
| Chapter (1): Anatomy, histology and pathology    | 7    |
| of the bladder                                   |      |
| Chapter (2): Etiology and epidemiology of        | 21   |
| cancer bladder                                   |      |
| Chapter (3): Clinical presentation and diagnosis | 31   |
| of cancer bladder                                |      |
| Chapter (4): Proteomics                          | 37   |
| Chapter (5): Molecular pathogenesis and genetic  | 66   |
| alterations markers                              |      |
| Chapter (6): Epigenetics alterations and markers | 97   |
| Discussion                                       | 110  |
| Summary and Conclusion                           | 112  |
| References                                       | 116  |
| Arabic Summary                                   | ١    |

## List of Abbreviations

| Abb.        | Meaning                                |
|-------------|----------------------------------------|
| TCC         | Transitional cell carcinoma            |
| SCC         | Squamous cell carcinoma                |
| WHO         | World health organization              |
| 2-DE        | 2-dimensional gel electrophoresis      |
| MS          | Mass spectrometry                      |
| ELISA       | Enzyme-linked immunosorbent assay      |
| PENK        | Proenkephalin                          |
| FDA         | Food and drug administration           |
| GAG         | Glycosaminoglycan layer                |
| CIS         | Carcinoma in situ                      |
| THMs        | Trihalomethanes                        |
| IARC        | International agency for research on   |
|             | cancer                                 |
| IVP         | Intravenous pyelography                |
| UCB         | Urothelial carcinoma of the bladder    |
| BTA stat    | Bladder tumor-associated analytes stat |
| BTA TRAK    | Bladder tumor-associated analytes      |
|             | TRAK.                                  |
| NMP22       | Nuclear matrix protein 22              |
| Urinary UBC | Urinary bladder cancer antigen         |
| BLCA-1      | Bladder cancer protein 1               |
| BLCA-4      | Bladder cancer protein 4               |
| CYP1A2      | Cytochrome p450 1A2.                   |
| NAT2        | N-acetyltransferase 2                  |
| GSTM1       | Glutathione S-transferase M1           |
| NNCs        | N-nitroso compounds                    |
| Rb          | Retinoblastoma                         |
| CDKN2       | Cyclin-dependent kinase inhibitor 2A   |
| c-erb-B2    | Proto-oncogene c-erb-B2                |
| EGFR        | Epidermal growth factor receptor       |
| FGFR3       | Fibroblast growth factor receptor 3    |

| Abb.       | Meaning                                  |
|------------|------------------------------------------|
| HRAS       | Harvey rat sarcoma viral oncogene        |
|            | homolog.                                 |
| NRAS       | Neuroblastoma RAS viral (v-ras)          |
|            | oncogene homolog                         |
| KRAS       | v-Ki-ras2 Kirsten rat sarcoma viral      |
|            | oncogene homolog                         |
| p16        | Biomineralization protein SpP16          |
| PIK3CA     | Phosphatidylinositol-4,5-bisphosphate 3- |
|            | kinase, catalytic subunit alpha          |
| CPG        | Cytosine guanine bonds in DNA            |
| RUNX3      | Runt-related transcription factor 3      |
| RASSF1A    | Ras association(RalGDS/AF-6)domain       |
|            | family member 1                          |
| DAPK       | Death-associated protein kinase          |
| $RAR\beta$ | Retinoic Acid Receptor beta              |
| MYO3A      | Myosin IIIA                              |
| CA10       | Carbonic anhydrase 10 protien coding     |
|            | gene                                     |
| NKX6-2     | NK6 homeobox 2                           |
| DBC1       | Deleted in bladder cancer 1              |
| SOX11      | SRY-box containing gene 11               |
| CDH1       | Cadherin-1 gene\ E-cadherin gene         |
| CDH13      | Cadherin 13 gene                         |
| FHIT       | Fragile histidine triad gene             |
| APC        | Adenomatous polyposis coli gene          |
| P14        | Alternating reading frame tumor          |
|            | suppressor gene                          |
| BCL2       | B-cell lymphocyte gene                   |
| TERT       | Telomerase reverse transcriptase gene    |
| CDKN2A     | Cyclin dependant kinas inhibitor 2A gene |
| MGMT       | o-6-methyl guanine DNA methyl            |
|            | transferase gene                         |
| GSTP1      | Glutathione s-transferase pi-1 gene      |
| CGH1       | Caenorhabditis elegans gene              |

## List of Tables

| Table No.         | Title                                                                                                                           | Page |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|------|
| Table (1)         | Primary tumor TNM classification                                                                                                | 19   |
| Table (2)         | Regional LNS TNM classification                                                                                                 | 20   |
| Table (3)         | Distant metastasis TNM classification                                                                                           | 20   |
| Table (4)         | Anatomic stage/prognostic groups                                                                                                | 20   |
| Table (5)         | Risk of recurrence in superficial bladder urothelial cancer                                                                     | 30   |
| Table (6)         | Summary of sensitivity and specificity of FDA-approved proteomics                                                               | 65   |
| Table (7)         | Summary of sensitivity and specificity of investigational proteomics                                                            | 65   |
| Table (8)         | Frequencies of individual mutations in primary tumors of 257 patients in a study of mutation in FGFR3, KRAS, NRAS, HRAS, PIK3CA | 90   |
| Table (9)         | Combinations of mutations in primary bladder tumors of 257 patients                                                             | 92   |
| <b>Table</b> (10) | Potential epigenetic markers obtained from bladder tumor specimens in many trials                                               | 103  |
| <b>Table (11)</b> | Potential epigenetic markers obtained from urine specimens in many trials                                                       | 105  |
| <b>Table (12)</b> | The sensitivity and specificity of the methylation markers                                                                      | 107  |

## List of Figures

| Figure No. | Title                                 | Page |
|------------|---------------------------------------|------|
| Figure (1) | Diagram showing bladder in relation   | 10   |
|            | to nearby structure in females and    |      |
|            | males                                 |      |
| Figure (2) | Positive florescence in situ          | 49   |
|            | hybridization (FISH) images           |      |
| Figure (3) | Frequencies of FGFR3, PIK3CA and      | 93   |
|            | RAS mutations in primary bladder      |      |
|            | tumors                                |      |
| Figure (4) | Frequencies of FGFR3, RAS,            | 94   |
|            | PIK3CA mutations and p53              |      |
|            | overexpression according to stage and |      |
|            | grade                                 |      |
| Figure (5) | Frequency of mutations in recurrence  | 96   |
|            | events in patients with a mutant      |      |
|            | primary bladder tumor                 |      |

#### Introduction

Bladder cancer is diagnosed in approximately 275,000 people each year all over the world, and about 108,000 die of this disease. In industrialized countries, 90% of bladder cancers are transitional cell carcinoma (TCC). In developing countries particularly in the Middle East and Africa the majority of bladder cancers are squamous cell carcinoma (SCC), but now days in developing countries most of the patients are transitional cell carcinoma because of the industrial revolution (*American Cancer Society*, 2012).

The world health organization (WHO) classifies bladder cancers as low grade (grades 1 and 2) or high grade (grade 3). Tumors are also classified by growth patterns: papillary (70%), sessile or mixed (20%), and nodular (10%). And also pathology classification: transitional cell carcinoma, squamous cell carcinoma, and adenocarcinoma (National Comprehensive Cancer Network, 2012).

Approximately 80-90% of patients with bladder cancer present with painless gross hematuria. Irritative bladder symptoms such as dysuria, urgency, or frequency of urination occur in 20-30% of patients with bladder cancer. Patients presenting with unexplained or refractory

irritative symptoms should be considered for cystoscopy and urine cytology (*Bladder Estimated incidence*, *all ages: both sexes''*. *GLOBOCAN 2010*).

The gold standard for diagnosing bladder cancer is biopsy obtained during cystoscopy. Sometimes it is an incidental finding during cystoscopy. Urine cytology can be obtained in voided urine or at the time of the cystoscopy ("bladder washing"). Cytology is very sensitive (a positive result is highly indicative of bladder cancer) but suffers from low specificity (inability of a negative result to reliably exclude bladder cancer) (Walid et al., 2010).

Understanding of the molecular mechanisms involved in carcinogenesis and cancer progression has identified a large number of molecular markers of bladder cancer, each of which has a potential diagnostic and prognostic value. Cystoscopy is the mainstay for diagnosing bladder cancer, but it is associated with a high cost and patient discomfort. Cytology and many urinebased tumor markers give us marginal information for detecting and predicting the prognosis of bladder cancer. Numerous factors, including chromosomal markers, genetic polymorphisms, and genetic and epigenetic alterations may be involved in tumorigenesis, progression and the patient's survival (*Dyrskjot*, 2011).

Bladder cancer tumor markers remain a rapidly evolving field. Newer technologies including proteomic markers, gene-expression profiling and epigenetic markers are now in the field evolving and can be used in early detection of cancer bladder and surveillance of recurrences (*Choi et al.*, 2010).

Proteomics refers to the study of proteins, including structure and function using technologies such as, high resolution 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) in urine specimen. nuclear matrix protein 22( NMP22) are the best example that bladder cancer markers can be identified initially through 2-DE and developed conventional then into Enzyme-linked immunosorbent assay (ELISA) tests, other proteomics which is Food and Drug Administration (FDA) approved like bladder tumor-associated analytes stat (BTA stat), bladder tumor-associated analytes TRAK (BTA TRAK), ImmunoCyt, nuclear matrix protein-BladderChek (NMP BladderChek), UroVysion, others under investigations like Telomerase, Survivin (Guo et al., 2011).

Genomic refers to the study of DNA or RNA sequences and gene expression differences between tissues resulting in signature expressions for specific cancer types Using technologies such as gene microarray technology,

tissue microarrays, microRNA profiling, In urothelial tumors somatic mutations in the Fibroblast growth factor receptor 3 (FGFR3), Harvey rat sarcoma viral oncogene homolog (HRAS), Neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS), and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) genes may be of use for early detection of primary and recurrent tumors, for prognosis prediction, and as a companion diagnostic for targeted therapies (*Hurst et al.*, 2009).

Epigenetics is a field that has co-evolved with genomics and proteomics and refers to reversible changes in gene function that occur without any change in genetic The epigenetic changes sequence. most common investigated in bladder tumor markers relate to DNA methylation such as: E-cadherin, p16, p14, Ras association (RalGDS/AF-6) domain family member 1 (RASSF1A), myosin IIIA (MYO3A), Transcription factor SOX11 (SOX11), NK6 homeobox 2 (NKX6-2), proenkephalin (PENK), and deleted in bladder cancer 1(DBC1) (Lokeshwar et al., 2011).

Bladder cancer is a major problem all over the world, many people die yearly from this disease, so it's a large health issues must solved, early diagnosis in high risk patients, will increase the survival and help in success of the treatment plan, the new era in diagnosis of bladder cancer and surveillance of recurrences is not the invasive maneuvers (*Bladder Cancer Clinical Guideline Update Panel*, 2012).

## Aim of the Work

Routine cystoscopy and biopsy is the gold standard for diagnosis but it's expensive, and sometimes patient discomfort is found. New available urine based biomarkers which is FDA approved is available today that help in early diagnosis, surveillance, and early detection of recurrence, in near future will help to find a target therapy in bladder cancer, also these biomarkers is not expensive, and get patient compliance.

# Anatomy, Histology and Pathology of the Bladder

### Anatomy of the bladder:

The anatomy of the bladder forms an extraperitoneal muscular urine reservoir that lies behind the pubic symphysis in the pelvis. A normal bladder functions through a complex coordination of musculoskeletal, neurologic, and psychological functions that allow filling and emptying of the bladder contents. The prime effector of continence is the synergic relaxation of detrusor muscles and contraction of the bladder neck and pelvic floor muscles. The normal adult bladder accommodates 300-600 mL of urine; a central nervous system (CNS) response is usually triggered when the volume reaches 400 mL. However, urination can be prevented by cortical suppression of the peripheral nervous system or by voluntary contraction of the external urethral sphincter (*Kingsnorth et al.*, 2000).

## Compounds of the bladder:

#### Bladder wall and bladder neck:

The bladder wall is made up of muscle fibers extending in all directions. This configuration is well suited