

Head and Neck Cancer in Elderly

Essay

Submitted for partial fulfillment of the M.S. Degree in Clinical Oncology

By

John Samir Asham

M.B; *B.Ch*.

Supervised by

Prof. Dr. Soheir Helmy Mahmoud

Prof. of Radiation Oncology and Nuclear Medicine Faculty of Medicine- Ain Shams University

Dr. Dina Ragab Diab

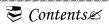
Ass. Prof. of Radiation Oncology and Nuclear Medicine Faculty of Medicine- Ain Shams University

Dr. Engi Moawad Elkholy

Lecturer of Radiation Oncology and Nuclear Medicine Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2014

Before all, Thanks to GOD the most compassionate, the most merciful.


I would like to express my sincere thanks and highest appreciation to **Dr. Soheir Helmy Mahmoud**, professor of Radiation Oncology & Nuclear Medicine, faculty of medicine, Ain Shams University, for her planning of this work, kind supervision and continuous guidance throughout this work, such support is never to be forgotten. It was an honor to me to carry out this work under her meticulous supervision and kind support.

I am most grateful to **Dr. Dina Ragab Diab**, Assistant Professor of, Radiation Oncology & Nuclear Medicine, Faculty of Medicine, Ain Shams University, for her valuable advice, continuous help and close supervision for this work.

I also would like to express my profound gratitude for **Dr. Engi Moawad Elkholy,** Lecturer of Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for her great guidance, immense support I warm advice.

Last but not least, great thanks to all my colleagues I my little family for their kind cooperation I support throughout this work.

🖎 John Samir Asham

Contents

Sı	ubjects Page
•	List of abbreviationsI
•	List of TablesIII
•	List of figuresVI
•	Introduction1
•	Aim of the work7
•	Overview of Head and Neck cancer in the Elderly patients 8
	- Demographic characteristics of the elderly in Egypt 8
	- Comprehensive geriatric assessment (CGA)11
	- Epidemiology of head and neck cancer21
•	Head and Neck Cancer Surgery in Older Patients40
•	Role of Radiation Therapy in Head and Neck cancer elderly
	patients 63
	- Clinical results in head and neck cancer in elderly
	treated with IMRT and IGRT64
	- Fractionation in Head and Neck Cancer in Elderly
	patients65
	- Brachytherapy70
	- Complications of radiotherapy in elderly patients73
	- Palliative radiotherapy to elderly81
•	Chemotherapy in Head and Neck cancer Older Patients83
•	Molecular-Targeted Therapies in elderly patients96
•	Multimodality Treatment of HNC in Older Patients117
	Summary & Conclusions130
	References 134
	Arabic summary

List of Abbreviations

F	[
5FU	5-Fluorouracil
ACE-27	Adult Comorbidity Evaluation
ADL	Activities of daily living
AJCC	American Joint Committee on Cancer
AP	Anteroposterior
ASA	American society for anaesthesiologists
ATP	Adenosine triphosphate
AUC	Area under the curve
BFI	Brief fatigue inventory
CALGB	Cancer and Leukemia Group B
CBC	Complete Blood Count
CFRT	Conformal Radiotherapy
CGA	Comprehensive geriatric assessment
CHART	Continuous Hyperfractionated Accelerated
	Radiotherapy
CIRSG	Cumulative Index Rating Scale for
	Geriatrics
CRT	Chemoradiotherapy
CSS	cancer-specific survival
CT	Computed Tomography / Chemotherapy
CTV	Clinical Target Volume
DSS	disease-specific survival
EBRT	External beam radiation therapy
EBV	Epstein-Bar Virus
ECOG	Eastern Cooperative Oncology Group

ECOG	Eastern Cooperative Oncology Group
EGFR	Epidermal Growth Factor Receptor
EJV	External Jugular Vein
EORTC	European Organization for Research and
	Treatment of Cancer
FDG-PET	Fluorodeoxyglucose Radiolabled with 18F-
	Positron Emission Tomography
GDS	Geriatric depression scale
GM-CSF	Granulocyte macrophage colony-stimulating
	factor
GORTEC	The French Radiotherapy Oncology Group
	for Head and Neck Cancer (Groupe
	Oncologie Radiothérapie Tête et Cou)
GSTTC	Gruppo di Studio sui Tumori della Testa
GTV	Gross Target Volume
Gy	Gray
HDR	High dose rate brachetherapy
HLAs	Human Leukocyte Antigens
HN	Head & Neck
HNC	Head and Neck Cancer
HNSCC	Head and Neck Squamous Cell Carcinoma
HR	Hazard ratio
IADL	Instrumental activities of daily living
IGRT	Image-Guided Radiotherapy
IJV	Internal Jugular Vein
IMRT	Intensity Modulated Radiation Therapy

KeV	Kilo electron Volt
KPS	Karnofsky Performance Status
LC	local control
LDR	Low dose rate brachetherapy
Linac	Linear Accelerator
M: F	Male to Female ratio
MAb	monoclonal antibodies
MACH-NC	Meta-Analysis of Chemotherapy in Head
study	and Neck Cancer
MEN II & III	Multiple Endocrine Neoplasia Type II & III
MeV	Mega electron Volt
MMS	Mini-mental state
MMSE	Mini Mental State Examination
MRI	Magnetic Resonance Imaging
MRND	Modified radical neck dissection
MSKCC	Memorial Sloan Kettering Cancer Center
MTC	Medullary Thyroid Cancer
NA	not available
NCI	National Cancer Institute
NPC	Nasopharyngeal Cancer (or Carcinoma)
OARs (ORs)	Organs at Risk
OR	odds ratio
OS	overall survival
PACE	Preoperative assessment of cancer in the
	elderly
PET	Positron Emission Tomography

PFS	progression-free survival
PGE	Prostaglandins
PS	Performance status
PT	primary tumor
PTV	Planning Target Volume
RR	relative risk
RT	Radiation Therapy (Radiotherapy)
RTOG	Radiation Therapy Oncology Group
SAN	Spinal accessory nerve
SCC	Squamous Cell Carcinoma
SCM	Sternoclinomastoid Muscle
SEER	Surveillance, Epidemiology and End Results
	Program
SIB	Simultaneous Integrated Boost
SIC	Satariano's index of co-morbidities
TKI	tyrosine kinase inhibitors
UW-QOL	University of Washington- Quality of Life

List of Tables

No.	Title	Page
1	Katz Index of Independence in Activities of Daily	14
	Living.	
2	The mini mental state exam	16
2	Co morbidity scales.	18
4	Mini Nutritional Assessment.	20
5	TNM staging system for carcinoma of the head and	31
	neck (Including base of tongue, soft palate, and	
	uvula).	
6	Recommendations to the TNM staging.	37
7	Lymphatic drainage of the head and neck and	42
	associated sites of primary tumors.	
8	Adult Comorbidity Evaluation-27. Identify the	45
	important medical comorbidities and grade severity	
	using the index.	
9	Pretreatment evaluations for incorporation in	55
	the daily care of older patients with head and	
	neck cancer	
10	Post surgical complication.	61
11	Definitive chemoradiation with standard	68-
	fractionation studies Definitive chemoradiation	69
	with hyperfractionation studies.	
12	Outcomes and toxicity in elderly specific studies	92
	for head and neck cancer.	

🕏 List of Tables 🗷

No.	Title	Page
13	Comparison of grade 3 toxicities in (a) phase III	101
	international trial of radiotherapy (RT) with or	
	without cetuximab for patients with stage III-IV	
	HNSCC, and (b) the EXTREME phase III trial of	
	platinum-based doublet chemotherapy with or	
	without cetuximab as first-line treatment for	
	recurrent or metastatic HNSCC.	
14	Common toxicities associated with antiangiogenic	116
	agents.	
15	Clinical characteristics of HNSCC: comparison	118
	between elderly patients and younger age groups	
	(only studies on different primary tumor.	
16	Impact of comorbidity indices on prognosis for	125
	head and neck cancer.	

List of Figures

No.	Title	Page
1	Egypt population pyramid.	9
2	Invasive squamous cell carcinoma.	30
3	Flowchart depicting a system based on a	39
	computational model to develop a prognostic score	
	and improved prediction of survival outcome.	
4	Levels of the neck as determined by lymphatic	41
	drainage patterns.	
5	EGFR targeting with monoclonal antibodies (mAb)	98
	or tyrosine kinase inhibitors (TKI) and subsequent	
	cellular and tissue effects. Clinical Cancer	
	Research.	
6	Kaplan–Meier estimates of locoregional control (a)	100
	and overall survival (b) in the phase III	
	international trial of radiotherapy with or without	
	cetuximab for patients with stage III-IV HNSCC.	
7	Kaplan-Meier estimates of overall survival (a) and	103
	progression-free survival (b) in the EXTREME	
	phase III trial of platinum-based doublet	
	chemotherapy with or without cetuximab in the	
	first-line treatment of recurrent or metastatic	
	HNSCC.	
8	Cetuximab-related acneiform rash.	107

🕏 List of Figures 🗷

No.	Title	Page
9	Structure of cetuximab. Galactose-a (alpha) - 1, 3-	109
	galactose oligopolysaccharides are located on the	
	murine Fab portion.	
10	Angiogenic switch. Most tumors start as avascular	113
	nodules (dormant).	

Introduction

Head and neck cancer (HNC) is a group of malignancies involving oral cavity, pharynx, ear/nose, paranasal sinuses, pharengeooesphegeal junction and larynx.

Overall, head and neck cancer accounts for more than 550,000 cases annually worldwide (*Parkn et al.*, 2012). Males are affected significantly more than females with a ratio ranging from 2:1 to 4:1. The incidence rate in males exceeds 20 per 100,000 in regions of France, Hong Kong, the Indian subcontinent, central and Eastern Europe, Spain, Italy, Brazil and among African Americans in the Unites States. Mouth and tongue cancers are more common in the Indian subcontinent, nasopharyngeal cancer is more common in Hong Kong, and pharyngeal and/or laryngeal cancers are more common in other populations (*Sankaranarayanan et al.*, 2012).

In the United States, head and neck cancer accounts for 3 percent of malignancies, with an estimated 52,000 Americans developing head and neck cancer annually and 11,500 dying from the disease (*Siegel et al.*, 2012).

The mortality associated with head and neck cancer in African Americans is higher than in whites (median overall survival 21 versus 71 months). The poorer prognosis appears to

be due in large part to poorer outcomes in patients with oropharyngeal cancer, which is much less common incidence in blacks compared with white patients (4 versus 34 percent) (Settle et al., 2009).

Head and neck cancers tend to be diagnosed at older ages. Nasopharynx shows a younger age at diagnosis than other cancers, with 40% of cases diagnosed at ages younger than 50. Cancer of the lip is diagnosed more frequently at older ages than cancers at other head and neck sites, with approximately 70% of cases diagnosed at age 60 or older (*Jay et al.*, 2006).

There are many risk factors for squamous cell carcinoma of head and neck region. The strongest is the consumption of tobacco along with alcohol is the major 'preventable' risk factors. Both tobacco and alcohol are dose-dependent and synergistic risk factors (Basu et al., 2008).

Recent studies have shown an inverse relationship of fruits and vegetables intake with HNC (Chuang et al., 2012) while a diet rich in red meat and fats pose increased risk (Edefonti et al., 2012). Lack of nutrients like Vitamin B12 and Folate might have synergetic effect, along with habit of tobacco consumption on the process of carcinogenesis (Raval et al., 2002).

The people belonging to lower socioeconomic group tend to have higher risk of HNC (Agarwal et al., 2011).

Recently HNC have been proposed to have a viral aetiology like Human Papilloma Virus (HPV) (Rautava et al., 2012), Epstein-Barr Virus (EBV) as well as being associated with various chromosomal deletions and other alterations, and mutations in tumor suppressor genes like p53 (Cadoni et al., 2012). Overexpression of p53 in the margins of tumor could be a gross predictor of clinical outcome (Jalali et al., 2011). Another p63 gene is reported to play a role in the normal cellular and carcinogenetic proliferation P63 marker which can be used for a confirmatory diagnosis of the squamous cell carcinomas of HNC (Khan et al., 2012).

Several assorted histological types of tumors are found in the head and neck region. Between 70% to 90% of head and neck cancers are epithelial in origin, and squamous cell carcinoma constitutes 66.7% of carcinomas and 47.8% of all head and neck cancers (Adeyemi et al., 2008). About 30% of all lymphomas occur in this region and they comprise the second most common primary malignancy in the head and neck region (Dubey et al., 2003). About 15% to 20% of all sarcomas are diagnosed in the head and neck region (McMains et al., 2008). Osteogenic sarcoma, rhabdomyosarcoma, malignant fibrous

histiocytoma and angiosarcoma are the most common histological types (Sturgis et al., 2003).

Although the majority of HNC occur between the fifth and sixth decade, their onset in patients older than 60 years is not a rare event. It has been estimated that as many as 24% of HNC are found in patients older than 70 years (Balducci et al., 2006).

Elderly patients are characterized by age-specific problems such as multi-organ functional decline, depression, alterations of mental status, reduced nutritional status and absence of social support, all of which have the potential to interfere with the diagnosis and treatment of their cancer. These problems are seen with different grades of severity in this subpopulation and, for this reason, chronological age by itself cannot be the only criterion for treatment planning. The biological age of each patient is one of the most important parameters and should be defined individually, based on co-morbidities and performance status (Syrigos et al., 2007).

The National Institute on Aging and the National Institutes of Health have redefined the term "elderly" as the age group greater or equal to 65 years, which covers three subcategories, namely: the "young old" for those aged between 65 and 74 years, the "older old" for those aged 75-85 years and the "oldest old" for subjects aged more than 85 years old (Parker et al., 2007).