Evaluation of Different Copro-Preservation Conditions on DNA Extraction and PCR Detection of *Cryptosporidium* species

Thesis

Submitted For partial fulfillment of Master Degree of Science in **Medical Parasitology**

${\it By}$ Marmar Ahmed Hanafy

M.B, B.Ch Demonstrator of Parasitology Faculty of Medicine, Ain Shams University

*Under supervision of*Prof. Dr/ Iman Moawad Abdelsalam

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Dr/ Rania Mohammad Sarhan

Lecturer of Medical Parasitology Faculty of Medicine, Ain Shams University

Dr/ Hanan Helmy

Assistant Professor Research and Training Center on Vectors of Disease Ain Shams University

Medical Parasitology Department
Faculty of Medicine
Ain Shams University
2015

تقييم الطرق المختلفة لحفظ البراز و تأثيرها على استخلاص الحمض النووى والتشخيص الجزيئي للكريبتوسبوريديام بارفام

رسالة

توطئة للمصول على ورجة الماجستير في العلوم الطبية ﴿ علم الطفيليات الطبية ﴾

مقرمة من

مرمسر أحمسد حنفسي

معيدة بقسم علم الطفيليات الطبية، كلية الطب، جامعة عين شمس

المشرفون

الأستاذة الدكتورة/ إيمان معوض عبد السلام

أستاذ بقسم علم الطفيليات الطبية كلية الطب- جامعة عين شمس

د./ رانیا محمد سرحان

مدرس بقسم علم الطفيليات الطبية كلية الطب- جامعة عين شمس

أستاذ مساعد/ حنان حلمي

مركز أبحاث ناقلات الأمراض، جامعة عين شمس قسم علم الطفيليات الطبية

> كلية الطب جامعة عين شمس

List of Abbreviations

Abbreviation	Full name	
AF	Acid fast	
AFLP	Amplified fragment length polymorphism	
AIDS	Acquired immunodeficiency syndrome	
AP	Auramine-phenol	
<i>C</i> .	Cryptosporidium	
CD	Cluster of differentiation	
CDPKs	Calcium-dependent protein kinases	
COWP	Cryptosporidium oocyst wall protein	
DFA	Direct fluorescent-antibody	
DNA	Deoxyribonucleic acid	
dNTPs	Deoxynucloetide triphosphates	
dsDNA	Double stranded DNA	
EIAs	Enzyme immunoassays	
ELISA	Enzyme linked immunosorbent assay	
FISH	Fluorescence in situ hybridization	
GC	Guanine and cytosine	
GP60	60kDa glycoprotein	
H & E	Hematoxylin and eosin	
HAART	Highly active anti-retroviral therapy	
HIV	Human immunodeficiency virus	
HSP 70	70 KDa heat shock protein	
ICT	Immunochromatographic test	
ΙΕΝ-γ	Interferon gamma	
IL	Interleukin	
KDa	Kilo Dalton	
Kdichromate	Potassium dichromate	
LAMP	Loop-mediated isothermal amplification	
mAbs	Monoclonal antibodies	
mg	Milli gram	

EList of Abbreviations

Abbreviation	Full name
MHC	Major histocompatibility complex
MLST	Multilocus sequence typing
mm3	Cubic Millimeter
MZN	Modified Ziehl-Neelsen
NK	Natural killer cells
PCR	Polymerase chain reaction
PCR-RFLP	PCR-Restriction fragment length polymorphism
PVA	Polyvinyl alcohol
RAPD	Random amplification of polymorphic DNA
RT	Room temperature
SAF	Sodium acetate formaldehyde
SAM	S-adenosyl-methionine synthetase
SNP	Single nucleotide polymorphism
Spp.	Species
SsDNA	Single stranded DNA
SSU rRNA	Small subunit ribosomal RNA
Th	T helper sells
TNF-α	Tumor necrosis factor alpha
%	Percentage
°C	Celsius degree
μl	Micro litre
μm	Micro meter

SList of Tables &

List of Tables

Number		Page
Table(1):	Primers used for the amplification of	82
	Cryptosporidium oocyst wall protein COWP	
	gene.	
Table(2):	Components of the 1ry and 2ry PCR reaction	83
	assays.	
Table(3):	The thermocycler program showing the used	83
	cycling conditions.	
Table(4):	Description of sensitivity of studied	104
	preservatives after 10, 20 and 30 days	
	individually.	
Table(5):	Description of overall sensitivity of studied	105
	preservatives along whole duration.	
Table (6):	Comparison between different preservatives as	105
	regard overall performance.	
Table (7):	Comparison between different preservatives	106
	after 10, 20 and 30 days of preservation.	
Table(8):	Comparison between -20 °C and other	109
	preservatives as regard performance after 10, 20	
	and 30 days.	
Table(9):	Comparison between K dichromate at RT and	110
	K dichromate at 4°C as regard performance	
	after 10, 20 and 30 days.	
Table (10):	Comparison between different preservatives	111
	along different intervals of extraction.	

List of figures

	Page
Classification of Cryptosporidium.	8
Cryptosporidium species	9
Life cycle of Cryptosporidium parvum.	13
Ultra structure of Apicomplexa.	14
Sporulation of Cryptosporidium oocysts and	16
release of four sporozoites.	
Mechanism of diarrhea caused by	20
Cryptosporidium.	
Cryptosporidium oocysts in wet mount.	34
Various staining techniques used for staining	35
of Cryptosporidium oocysts in fecal samples.	
Cryptosporidium oocysts stained with	36
Modified AF stain.	
Hematoxylin and eosin stain of intestinal	37
epithelium.	
Cryptosporidium oocysts stained with safranin	37
stain.	
Cryptosporidium oocysts stained with	38
Modified acid fast trichrome.	
Cryptosporidium parvum oocysts stained with	40
the fluorescent stain auramine-rhodamine.	
Transmission electron micrograph of a murine	40
-	
	42
	74
Model for ICT.	44
	Cryptosporidium species Life cycle of Cryptosporidium parvum. Ultra structure of Apicomplexa. Sporulation of Cryptosporidium oocysts and release of four sporozoites. Mechanism of diarrhea caused by Cryptosporidium. Cryptosporidium. Cryptosporidium oocysts in wet mount. Various staining techniques used for staining of Cryptosporidium oocysts in fecal samples. Cryptosporidium oocysts stained with Modified AF stain. Hematoxylin and eosin stain of intestinal epithelium. Cryptosporidium oocysts stained with safranin stain. Cryptosporidium oocysts stained with safranin stain. Cryptosporidium oocysts stained with the fluorescent stain auramine-rhodamine. Transmission electron micrograph of a murine small intestinal epithelial cell infected by Cryptosporidium. Cryptosporidium spp. oocysts labeled with immunofluorescent antibodies.

Number		Page
Fig. (17):	A diagram illustrating FISH technique.	46
Fig. (18):	Conventional PCR.	49
Fig. (19):	Nested PCR.	52
Fig. (20):	Leak-proof plastic containers used for	62
	collection of stool samples.	
Fig. (21):	Basic fuchsin powder and working Carbol	69
	fuchsin solution.	
Fig. (22):	Malachite green used for the staining of the	69
	background.	
Fig. (23):	Slides after staining with MZN stain.	69
Fig. (24):	Principle of ICT.	70
Fig. (25):	ICT showing Cryptosporidium positive and	73
	negative results.	
Fig. (26):	Preservative solutions used for stool samples	74
	preservation: k dichromate, formaldehyde, and	
	ethyl alcohol.	
Fig. (27):	Qiagen stool DNA extraction Mini Kit.	79
Fig. (28):	Thermal cycler used in DNA amplification	84
	(Professional thermocycler, Biometra, Applied	
	Biosystem, California, USA).	
Fig. (29):	Gel electrophoresis apparatus used for	87
	detection of the PCR products.	
Fig. (30):	MZN stained smear for Cryptosporidium	89
	positive stool samples.	
Fig. (31):	MZN stained smear from negative stool	89
	samples.	
Fig. (32):	Agarose gel electrophoresis for the products of	90
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from fresh stool samples 1, 2,	
	3, 4 and 5.	
Fig. (33):	Agarose gel electrophoresis for the products of	91

Number		Page
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from fresh stool samples 6, 7,	
	8, 9 and 10.	
Fig. (34):	Agarose gel electrophoresis for the products of	92
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 1, 2 and 3	
	after 10 days of preservation.	
Fig. (35):	Agarose gel electrophoresis for the products of	93
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 4 and 5	
	after 10 days of preservation.	
Fig. (36):	Agarose gel electrophoresis for the products of	94
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 6 and 7	
Fig. (37):	after 10 days of preservation. Agarose gel electrophoresis for the products of	95
Fig. (37).	the nPCR targeting COWP gene at 553 bp, for	93
	DNA extracted from stool samples 8, 9 and 10	
	after 10 days of preservation.	
Fig. (38):	Agarose gel electrophoresis for the products of	96
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples1, 2, and 3	
	after 20 days of preservation.	
Fig. (39):	Agarose gel electrophoresis for the products of	97
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 4 and 5	
	after 20 days of preservation.	
Fig. (40):	Agarose gel electrophoresis for the products of	98
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 6 and 7	
	after 20 days of preservation.	

Number		Page
Fig. (41):	Agarose gel electrophoresis for the products of	99
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 8, 9 and 10	
	after 20 days of preservation.	
Fig. (42)	Agarose gel electrophoresis for the products of	100
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 1, 2 and 3	
	after 30 days of preservation.	
Fig. (43)	Agarose gel electrophoresis for the products of	101
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 4 and 5	
	after 30 days of preservation.	
Fig. (44)	Agarose gel electrophoresis for the products of	102
	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 6 and 7	
	after 30 days of preservation.	
Fig. (45)	Agarose gel electrophoresis for the products of	103
8 ()	the nPCR targeting COWP gene at 553 bp, for	
	DNA extracted from stool samples 8, 9 and 10	
	after 30 days of preservation.	
Fig. (46)	Comparison of different preservatives as	106
1 18 (10)	regards overall sensitivity.	100
Fig. (47)	Comparison of sensitivity of different	107
11g. (47)	preservatives after 10 days of preservation.	107
Fig. (40)		107
Fig. (48)	1	107
E. (40)	preservatives after 20 days of preservation.	100
Fig. (49)	Comparison of sensitivity of different	108
	preservative after 30 days of preservation.	

Acknowledgement

I wish to express my deep gratitude to **Prof. Dr. Iman Moawad**Abdelsalam, Professor of Medical Parasitology, Medical Parasitology
Department, Faculty of Medicine, Ain Shams University, for her faithful supervision, precious advice and meticulous revision of every part of this work.

I am much obliged to **Dr. Rania Mohammad Sarhan**, Assistant Professor of Medical Parasitology, Medical Parasitology Department, Faculty of Medicine, Ain Shams University, for her constant guidance, kind supervision and sincere encouragement.

I would like to express my deep appreciation to **Dr.Hanan Helmy**, Assistant Professor at Research and Training Center on Vectors of Disease, Ain Shams University for her sincere help, continuous guidance and facilities she provided to perform the study.

I would like to thank **Prof. Dr. Hisham Mohammad Hussein,** Head of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, for her great support.

I feel much indebted to **Dr. Ayman Abdel-Moamen El-Badry,** Professor of Medical Parasitology, Medical Parasitology Department, Faculty of Medicine, Cairo University, for his guidance and for the facilities he provided to perform the study.

Many thanks to the members of Diagnostic and Research Unit of Parasitology, Faculty of Medicine, Ain Shams University and the Pediatrics Department, Eldemerdash Hospital, for allowing me to obtain samples for the study.

Marmar Ahmed Hanafy

Secontents &

Contents

Subjects	Page
Introduction	1
Aim and plan of the Work	4
Review of literature	6
Materials and Methods	62
Results	89
• Discussion	112
Summary and conclusion	125
Recommendations	131
• References	132
• Arabic summery	

Introduction

Cryptosporidium is an obligate intracellular protozoan causing enteric infection in a wide range of mammals, including humans (Quilez et al., 2011). Cryptosporidiosis caused by different Cryptosporidium species (spp.) has reported world-wide increasingly both been immunocompetent and immunocompromised individuals causing a spectrum of diseases ranging from asymptomatic carrier state to severe diarrhea. Infection results in mild self-limited disease in immunocompetent and often lethal diarrhea or extraintestinal disease in immunocompromised individuals, most notably in patients with acquired immunodefeciency syndrome (AIDS) particularly those with low CD4 counts (Fayer et al., 2000; Chen et al., 2002; Kaushik et al., 2008 and Uppal et al., 2014).

Despite its worldwide occurrance, cryptosporidiosis is considered a neglected disease by the World Health Organization's Neglected Diseases Initiative 2010, largely due to the lack of studies in developing countries (*Savioli et al.*, 2006 and Chalmers and Davies, 2010).

Epidemiologic studies on human cryptosporidiosis are made difficult by the different transmission pathways and by the limitation in identifying species using conventional methods, such as staining and immunological tests. Conventional microscopy is time consuming and needs skilled technician due to the very small oocyst (size: 4-6

μm), which is sometimes difficult to differentiate from the fungal spores which are of the same size and stains red too (*Kurniawan et al., 2009*). In addition, it has relatively low diagnostic sensitivity (*Weber et al., 1991; Mansfield and Gajadhar, 2004 and Chacon-Cruz, 2014*).

Immunological based detection methods have been developed for use in both clinical and environmental monitoring. However, antigenic variability within clinical isolates can result in some infections remaining undetected. These methods also can not be used for species differentiation at varying degrees of sensitivity and specificity. In order to solve the problem, better techniques with higher sensitivity and specificity are necessary such as PCR (*Kaushik et al.*, 2008).

Molecular techniques for laboratory diagnosis of cryptosporidiosis were developed and showed excellent specificity and sensitivity, compared with antigen detection and microscopy. This facilitates early detection of *Cryptosporidium* infection which further adds to the knowledge for clinical management and control of the disease (*Tumwine et al.*, 2003; *El-badry et al.*, 2010 and Salyer et al., 2012).

DNA isolation from fecal specimen is not as simple as those from blood or other samples; this is due to the presence of inhibitors such as bilirubin, bile acids and mineral ions, in stool that can interfere with the PCR reaction. Apart from that, type of preservative solution and

duration of sample preservation determine the success of the test as the DNA can be rapidily degraded if not appropriately preserved (*Kurniawan et al.*, 2009 and Kuk et al., 2012).

So, an effective DNA extraction method is needed to isolate DNA either from fresh stool as quickly as possible, or the stool in question should be appropriately preserved; so preservation time and conditions are important factors in the isolation of DNA from stool samples and its use in molecular approaches to diagnose infection with intestinal parasites and other microorganisms (*Kuk et al.*, 2012).

Although various stool preservatives are available and many of them are suitable for sample preservation for further microscopy and immunological tests, preservatives that are compatible with molecular detection are different (*Pietrzak-Johnston et al.*, 2000 and CDC, 2013).

The present study aimed to evaluate the best preservation condition for the isolation of *Cryptosporidium* species DNA from stool.

Aim of the work

The Aim of the present study is to:

Evaluate different conditions and timing of fecal preservation for the best outcome of molecular diagnosis of *Cryptosporidium* species.

Plan of the work

Preparatory steps for the study:

- A) Collection of fresh stool samples from patients attending the Diagnostic and Research Unit of Parasitic diseases, Faculty of Medicine, Ain Shams University, the Pediatric department of El-demerdash hospital, Ain Shams University, Abo-elreesh hospital, Cairo University, and the fever hospital in El-abbasya.
- B) Examination of the fresh stool samples by direct wet smear; once by saline and the other by iodine.
- C) Formalin-ethyl acetate sedimentation concentration of the specimens.
- D) Acid fast staining of stool samples with Modified Ziehl-Neelsen technique.
- E) Application of Immunochromatographic test (ICT) to to validate positivity of staining and microscopy.