

Department of Entomology Faculty of Science Ain Shams University

Effectiveness of some plant essential oil formulations on the two-spotted spider mite *Tetranychus urticae* Koch (Acari: Tetranychidae) and its predacious mites of the family Phytoseiidae

A thesis
Presented to the Department of Entomology, Faculty of Science,
Ain Shams University, For the
Award of the Ph.D.
Degree of Science
(Entomology)

\mathbf{BY}

Shimaa Fahim Mohamed Fahim

B.Sc. Faculty of Science, 2005 M. Sc. Faculty of Science, 2011

Department of Entomology

Faculty of Science

Ain Shams University

2016

Department of Entomology Faculty of Science Ain Shams University

Effectiveness of some plant essential oil formulations on the two-spotted spider mite *Tetranychus urticae* Koch (Acari: Tetranychidae) and its predacious mites of the family Phytoseiidae

A Thesis
Presented to the Department of Entomology, Faculty of Science,
Ain Shams University, For the
Award of the Ph.D.
Degree of Science
(Entomology)

BY

Shimaa Fahim Mohamed Fahim

M. Sc. Faculty of Science, Ain Shams University 2011

Under the supervision of:

Prof. Dr. Hashim Ali Abdel Rahman	
Professor of Entomology, Faculty of Science, Ain Shams University	y.
Prof. Dr. Maissa Mohamed Abdel Kader	
Professor of Entomology, Faculty of Science, Ain Shams Universit	ty.
Prof. Dr. Faten Mamdouh Momen	
Professor of Acarology, National Research Centre.	
Prof. Dr. Elham Ahmed Sammour	
Professor of Pesticide, National Research Centre.	
Dr. Said Moursi Ali	
Assistant Professor of Entomology, Faculty of Science, Ain Shams	University.

APPROVAL SHEET

Name of student: Shimaa Fahim Mohamed Fahim

Title of Thesis: Effectiveness of some plant essential oil formulations

on the two-spotted spider mite *Tetranychus urticae* Koch (Acari: Tetranychidae) and its predacious mites

of the family Phytoseiidae

Degree : Ph.D. (Entomology).

Approved by:

Prof. Dr. Maissa Mohamed Abdel Kader Professor of Entomology, Faculty of Science, Ain Shams University. Prof. Dr. Faten Mamdouh Momen Professor of Acarology, National Research Centre. Prof. Dr. Wedad Ahmed Atwa Professor of Entomology, Faculty of Science, Al-Azhar University. Prof. Dr. Naeem Mohamed Essa Professor of Entomology, Faculty of Science, Cairo University.

Date of Examination: 13 / 6 / 2016

ACKNOWLEDGEMENT

First of all, I would like to ultimate thank Almighty Allah for the uncounted helps and gifts in performing this study.

The authoress wishes to express her deepest appreciation to the supervisors whose thoughts and efforts were behind every particle in this work.

Whatever words I can write, non-can express my appreciation and deep gratitude to the late **Professor Hashim Ali Abdel Rahman**, Professor of Entomology, Faculty of Science, Ain Shams University, for his kind and active supervision, help, valuable guidance and advice, support and constructive comments of this study.

It gives the authoress a great pleasure to express her deep and sincere gratitude to **Professor Maissa Mohamed Abdel Kader**, Professor of Entomology, Faculty of Science, Ain Shams University, and **Professor Faten Mamdouh Momen**, Professor of Acarology, National Research Centre, under whose supervision this work has been carried out; and for their guidance, advice, continuous encouragement and support, valuable suggestions and fruitful discussion.

I would like to express my deep gratitude to **Professor Said Moursi Ali**, Assistant Professor of Entomology, Faculty of Science, Ain Shams University, for his help, valuable advice and participation in the supervision on the current study.

I am deeply and strongly thank **Professor Elham Ahmed Sammour**, Professor of Pesticide, National Research Centre, for her enormous help and participation in the supervision on this thesis.

Sincere thanks are also due to Professor Mohamed Gesraha, Professor of Entomology, National Research Centre, for his guidance and revision of the statistical analysis. The authoress wishes to thank Professor Nahed fawzy, Assistant Professor, National Research Centre, for her help in the estimation of photosynthetic pigments of the plants during the current study.

I gratefully acknowledge National Research Centre for the financial support during the present work.

The authoress wishes to record her respect to the head and staff members in the Department of Pests and Plant Protection, National Research Centre, and to the head and staff members in the Department of Entomology, Faculty of Science, Ain Shams University for their kind support throughout this thesis.

All my love and respect are due to my dear parents for their kind support, encouragement, and always praying for me; and to my beloved husband and son for the patience, encouragement and missing me most of the time.

ABSTRACT

The present study aims to assess the effectiveness of five essential oils and their prepared formulations against the two-spotted spider mite, *Tetranychus urticae* Koch and its associated predatory mites of the family Phytoseiidae. The relative percentages of the main components of the tested essential oils (*Artemisia maritima* L., *Melissa officinalis* L., *Mentha longifolia* (L.) Huds., *Thymus vulgaris* L. and *Zingiber officinale* Roscoe oils) were identified by GC/MS.

The studied essential oils were tested for their acaricidal activity against the serious agricultural pest, *T. urticae*, using different application methods. All the tested essential oils proved that they have acaricidal, repellent and oviposition deterrence activity against *T. urticae* with variable degrees. In most cases, the direct spray application was the most effective application against eggs, nymphs and females of *T. urticae* while the systemic application was the least one against the nymphs and females. However, the fumigant application was the most effective application on *T. urticae* in case of *M. longifolia* oil.

The obtained data showed that the LC₅₀ values of M. officinalis, T. vulgaris, Z. officinale, A. maritima and M. longifolia oils on T. urticae females were 0.36, 0.40, 0.60, 0.77 and 1.43%, respectively using the direct spray application. In addition, the acaricidal activity of the prepared oil formulations (the prepared formulations labeled: Misicide, Melissacide, Mento, Thymo and Gingcide) were tested against T. urticae stages. Melissacide and Thymo were the most potent formulations against T. urticae nymphs and females while Mento being the least one.

The efficiency of the studied essential oils and their formulations on eggs and females of the tested predatory phytoseiid mites (*Neoseiulus barkeri* (Hughes), *Neoseiulus californicus* (McGregor) and *Typhlodromips swirskii* (Athias-Henriot)) were evaluated in the

present study. Based on the LC₅₀ values, Thymo and Mento (LC₅₀= 0.44 and 0.72%) showed the least adulticidal activity against *N. barkeri* and *N. californicus*, while Melissacide and Misicide (LC₅₀= 0.016 and 0.174 %) showed the highest one, respectively. In addition, Mento (LC₅₀= 0.34%) was the least effective tested formulation against *T. swirskii* females, while Melissacide (LC₅₀= 0.002%) was the most effective one.

The obtained data showed that females of *N. barkeri* and *T. swirskii* showed a significant reduction in food consumption and fecundity when sprayed with two sublethal concentrations (LC₂₅ recorded on each predator and LC₂₅ recorded on *T. urticae*) of the most tested formulations. On the other hand, spraying *N. californicus* females with the two sublethal concentrations of Misicide resulted in a significant reduction in both food consumption and fecundity. However, in most cases, spraying *N. californicus* females with the two sublethal concentrations of Melissacide, Mento, Thymo and Gingcide did not show any significant reduction in food consumption but resulted in a significant reduction in egg deposition. Evaluation of the persistence and phytotoxicity of the tested formulations was also included in the present study.

Key words: Tetranychus urticae, Tetranychidae, Neoseiulus barkeri, Neoseiulus californicus, Typhlodromips swirskii, Phytoseiidae, Artemisia maritima, Melissa officinalis, Mentha longifolia, Thymus vulgaris, Zingiber officinale, essential oils, oil formulations, acaricidal activity.

CONTENTS

	Page
I-INTRODUCTION	1
II- LITERATURE REVIEW	5
1. Identification of main components of the essential oils using	
GC/MS	5
2. Repellency and oviposition deterrence activity of the essential	
oils on T. urticae	5
3. Acaricidal activity of the essential oils against tetranychid mite	
pests	9
4. Acaricidal activity of the essential oil formulations against	
tetranychid and phytoseiid mites	9
5. Toxic effects of the tested essential oils against fungi, bacteria,	
insects and other mite pests	10
6. Toxic effects of some plant extracts against insect and mite	
pests	10
7. Efficiency of the essential oils against predatory phytoseiid	
mites	11
8. Indirect effects of the essential oils on some biological aspects	
of predatory phytoseiid mites	11
9. Persistence and residual activity	12
10. Phytotoxicity	13
III-MATERIALS AND METHODS	15
A- Materials	15
1. Plant materials	15
1.1. Extraction of plant essential oils	15
1.2. Preparation of the primary emulsions	16
1.3. Preparation of the tested essential oils as formulations	16
2. Mite cultures	17
2.1. Stock culture of the phytophagous mite, <i>T. urticae</i>	17
2.2. Maintenance of predatory mite stock cultures	17

CONTENTS (continue)	
B- Experiments	18
1. Identification of main components of the tested essential oils	
using GC/MS	18
1.1. Identification of the essential oils components	19
2. Physico-Chemical properties of the prepared formulations	19
2.1. Emulsion stability test	19
2.2. Foam formation test	20
3. Repellency and oviposition deterrence activity of the tested	
essential oils on <i>T. urticae</i> females	20
4. Acaricidal activity of the tested essential oils on <i>T. urticae</i>	
stages	21
4.1. Direct spray application	21
4.2. Leaf dipping application	22
4.3. Fumigant application	23
4.4. Systemic application	24
5. Acaricidal activity of the tested formulations on T. urticae	
stages	25
6. Efficiency of the studied essential oils on eggs and females of	
the tested predatory mites	25
6.1. Direct spray application	26
6.2. Fumigant application	27
7. Efficiency of the studied formulations on eggs and females of	
the tested predatory mites	28
8. Efficiency of LC ₅₀ and LC ₉₀ values (recorded on <i>T. urticae</i>) of	
the studied essential oils and their formulations on eggs and	
females of the tested predatory mites	29
8.1. Direct spray application	29
8.2. Fumigant application	29
9. Indirect effects of two sublethal concentrations of the studied	
formulations on some biological aspects of the tested predatory	
mites	30
10. Persistence of the tested formulations	30
11. Phytotoxicity of the tested formulations	32
11.1. Phytotoxicity symptoms	32
11.2. Estimation of the photosynthetic pigments	32

CONTENTS (continue)	Page
12. Statistical analysis.	33
IV-RESULTS	36
A. Artemisia maritima L	
	36
1. Identification of main components of <i>A. maritima</i> oil using	
GC/MS.	36
2. Physico-Chemical properties of Misicide.	38
3. Repellency and oviposition deterrence activity of <i>A. maritima</i>	
oil on <i>T. urticae</i> females.	38
4. Acaricidal activity of <i>A. maritima</i> oil on <i>T. urticae</i> stages	40
4.1. Acaricidal activity on <i>T. urticae</i> eggs.	40
4.2. Acaricidal activity on <i>T. urticae</i> nymphs	41
4.3. Acaricidal activity on <i>T. urticae</i> females.	43
5. Acaricidal activity of Misicide on <i>T. urticae</i> stages	44
6. Efficiency of <i>A. maritima</i> oil on eggs and females of the tested predatory mites	
	46
7. Efficiency of Misicide on eggs and females of the tested	48
predatory mites	
•	
A. maritima oil and Misicide on eggs and females of the tested	
9. Indirect effects of two sublethal concentrations of Misicide on	
some biological aspects of the tested predatory mites	52
10. Persistence of Misicide	57
11. Phytotoxicity of Misicide	59
11.1 Phytotoxicity symptoms	59
11.2. Estimation of the photosynthetic pigments	
	59
B. Melissa officinalis L	63
1. Identification of main components of M. officinalis oil using	
GC/MS	63
2. Physico-Chemical properties of Melissacide	66
3. Repellency and oviposition deterrence activity of M. officinalis	
oil on <i>T. urticae</i> females	66
4. Acaricidal activity of <i>M. officinalis</i> oil on <i>T. urticae</i> stages	68
4.1. Acaricidal activity on <i>T. urticae</i> eggs	68

CONTENTS (continue)	Page
4.2. Acaricidal activity on <i>T. urticae</i> nymphs	69
4.3. Acaricidal activity on <i>T. urticae</i> females	71
5. Acaricidal activity of Melissacide on <i>T. urticae</i> stages	72
6. Efficiency of <i>M. officinalis</i> oil on eggs and females of the	
tested predatory mites	74
7. Efficiency of Melissacide on eggs and females of the tested	
predatory mites	76
8. Efficiency of LC ₅₀ and LC ₉₀ values (recorded on <i>T. urticae</i>) of	
M. officinalis oil and Melissacide on eggs and females of the	
tested predatory mites.	78
9. Indirect effects of two sublethal concentrations of Melissacide	0.0
on some biological aspects of the tested predatory mites	80
10. Persistence of Melissacide	86
11. Phytotoxicity of Melissacide	88
11.1. Phytotoxicity symptoms	88
11.2. Estimation of the photosynthetic pigments	88
C. Mentha longifolia (L.) Huds	92
1. Identification of main components of M. longifolia oils using	
GC/MS	92
2. Physico-Chemical properties of Mento	95
3. Repellency and oviposition deterrence activity of <i>M. longifolia</i>	
oil on <i>T. urticae</i> females	95
4. Acaricidal activity of <i>M. longifolia</i> oil on <i>T. urticae</i> stages	97
4.1. Acaricidal activity on <i>T. urticae</i> eggs	97
4.2. Acaricidal activity on <i>T. urticae</i> nymphs	98
4.3. Acaricidal activity on <i>T. urticae</i> females	100
5. Acaricidal activity of Mento on <i>T. urticae</i> stages	101
5.1. Using fumigant application	101
5.2. Using direct spray application	103
6. Efficiency of <i>M. longifolia</i> oil on eggs and females of the tested	
predatory mites	104
7. Efficiency of Mento on eggs and females of the tested	
predatory mites	106
8. Efficiency of LC_{50} and LC_{90} values (recorded on <i>T. urticae</i>) of	
M. longifolia oil and Mento on eggs and females of the tested	

CONTENTS (continue)	Page
predatory mites	108
9. Indirect effects of two sublethal concentrations of Mento on	
some biological aspects of the tested predatory mites	110
10. Persistence of Mento	115
11. Phytotoxicity of Mento	117
11.1. Phytotoxicity symptoms	117
11.2. Estimation of the photosynthetic pigments	117
D. Thymus vulgaris L	121
1. Identification of main components of T. vulgaris oil using	
GC/MS	121
2. Physico-Chemical properties of Thymo	124
3. Repellency and oviposition deterrence activity of T. vulgaris	
oil on <i>T. urticae</i> females	124
4. Acaricidal activity of <i>T. vulgaris</i> oil on <i>T. urticae</i> stages	126
4.1. Acaricidal activity on <i>T. urticae</i> eggs	126
4.2. Acaricidal activity on <i>T. urticae</i> nymphs	127
4.3. Acaricidal activity on <i>T. urticae</i> females	129
5. Acaricidal activity of Thymo on <i>T. urticae</i> stages	130
6. Efficiency of T. vulgaris oil on eggs and females of the tested	
predatory mites	132
7. Efficiency of Thymo on eggs and females of the tested	
predatory mites	134
8. Efficiency of LC ₅₀ and LC ₉₀ values (recorded on T . $urticae$) of	
T. vulgaris oil and Thymo on eggs and females of the tested	
predatory mites	137
9. Indirect effects of two sublethal concentrations of Thymo on	
some biological aspects of the tested predatory mites	139
10. Persistence of Thymo	144
11. Phytotoxicity of Thymo	146
11.1. Phytotoxicity symptoms	146
11.2. Estimation of the photosynthetic pigments	146
E. Zingiber officinale Roscoe	150
1. Identification of main components of Z. officinale oil using	
GC/MS	150

CONTENTS (continue)	Page
2. Physico-Chemical properties of Gingcide	153
3. Repellency and oviposition deterrence activity of Z. officinale	
oil on <i>T. urticae</i> females	153
4. Acaricidal activity of <i>Z. officinale</i> oil on <i>T. urticae</i> stages	155
4.1. Acaricidal activity on <i>T. urticae</i> eggs	155
4.2. Acaricidal activity on <i>T. urticae</i> nymphs	156
4.3. Acaricidal activity on <i>T. urticae</i> females	158
5. Acaricidal activity of Gingcide on <i>T. urticae</i> stages	159
6. Efficiency of Z. officinale oil on eggs and females of the tested	
predatory mites	160
7. Efficiency of Gingcide on eggs and females of the tested	
predatory mites	162
8. Efficiency of LC_{50} and LC_{90} values (recorded on $T.$ urticae) of	
Z. officinale oil and Gingcide on eggs and females of the tested	
predatory mites	164
9. Indirect effects of two sublethal concentrations of Gingcide on	
some biological aspects of the tested predatory mites	166
10. Persistence of Gingcide	171
11. Phytotoxicity of Gingcide	173
11.1. Phytotoxicity symptoms	173
11.2. Estimation of the photosynthetic pigments	173
V-DISCUSSION	177
VI-CONCLUSION	183
VII-SUMMARY	184
VIII-REFERENCES	190
IX-ANNEXES	212

Гable No.	List of Tables	Page
1	Plant species used in the present study	15
2	The formulations used in the present study	16
3	Percentages of chemical components identified in <i>A. maritima</i> essential oil by GC/MS	36
4	Mean numbers of <i>T. urticae</i> eggs and females on plant leaf discs treated with <i>A. maritima</i> oil exposed to different concentrations at various time intervals	39
5	Acaricidal activity of <i>A. maritima</i> oil on <i>T. urticae</i> eggs by different application methods	41
6	Acaricidal activity of <i>A. maritima</i> oil on <i>T. urticae</i> nymphs by different application methods	42
7	Acaricidal activity of <i>A. maritima</i> oil on <i>T. urticae</i> females by different application methods	44
8	Acaricidal activity of Misicide on <i>T. urticae</i> stages by direct spray application	45
9	Efficiency of <i>A. maritima</i> oil using direct spray application on eggs and females of the tested predatory mites	47
10	Efficiency of Misicide using direct spray application on eggs and females of the tested predatory mites	49
11	Efficiency of LC ₅₀ and LC ₉₀ values (recorded on T . $urticae$) of A . $maritima$ oil and Misicide on eggs and	
12	females of the tested predatory mites Effect of two Misicide sublethal concentrations on food consumption and mortality of the tested predatory mites	51 53
13	Effect of two Misicide sublethal concentrations on reproduction, hatchability and sex ratio of the tested predatory mites	
14	Persistence of Misicide on bean plant	57
15	Effect of Misicide on photosynthetic pigments of bean plant	60
16	Percentages of chemical components identified in <i>M</i> . officinalis oil by GC/MS.	64

Table	List of Tables (continue)	Page
No.		
17	Mean numbers of <i>T. urticae</i> eggs and females on plant leaf	
	discs treated with M. officinalis oil exposed to different	
	concentrations at various time intervals	67
18	Acaricidal activity of M. officinalis oil on T. urticae eggs	
	by different application methods	69
19	Acaricidal activity of M. officinalis oil on T. urticae	
	nymphs by different application methods	70
20	Acaricidal activity of M. officinalis oil on T. urticae	
	females by different application methods	72
21	Acaricidal activity of Melissacide on T. urticae stages by	7
	direct spray application	73
22	Efficiency of M. officinalis oil using direct spray	7
	application on eggs and females of the tested predatory	7
	mites	75
23	Efficiency of Melissacide using direct spray application or	1
	eggs and females of the tested predatory mites	77
24	Efficiency of LC_{50} and LC_{90} values (recorded on T_{50}	•
	urticae) of M. officinalis oil and Melissacide on eggs and	l
	females of the tested predatory mites.	79
25	Effect of two Melissacide sublethal concentrations on food	l
	consumption and mortality of the tested predatory mites	82
26	Effect of two Melissacide sublethal concentrations on	
	reproduction, hatchability and sex ratio of the tested	
	predatory mites	83
27	Persistence of Melissacide on bean plant	86
28	Effect of Melissacide on photosynthetic pigments of bean	1
	plant	89
29	Percentages of chemical components identified in M.	
	longifolia essential oil by GC/MS	93
30	Mean numbers of T. urticae eggs and females on plant leaf	
	discs treated with M. longifolia oil exposed to different	06
	concentrations at various time intervals	96
31	Acaricidal activity of M. longifolia oil on T. urticae eggs	3
	by different application methods	98