Assessment of the lung function using impulse oscillometry before and after bronchoscopic lung volume reduction

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases and Tuberculosis

Presented by

Alsayyed Abd Al-Baset Alsayyed Hassan

M.B.B.Ch

Supervised by

Prof.Adel Mahmoud Khattab

Professor of Chest Diseases

Faculty of Medicine

Ain Shams University

Assistant Professor.Nevine Mohamed Abd AL-Fattah

Associate Professor of Chest Diseases

Faculty of Medicine

Ain Shams University

Prof. Ayman Abd Al-Hameed Farghaly

Consultant of pulmonary diseases

Military Medical Academy

Faculty of Medicine

Ain Shams University

2016

♦ INTRODUCTION ♦

Acknowledgement

First, grace and foremost thanks are duo to ALLAH, most Gracious, most merciful, for blessing this work, as a part of His generous help throughout our lives.

I would like to express my sincere gratitude and respect to Prof.Adel Mahmoud Khattab, Professor of Chest Diseases, Ain Shams University, for his continuous guidance and supervision, his kind encouragement and support throughout the entire period of the study.

It is my pleasure to express my unlimited appreciation and deepest thanks to Dr. Nevine Mohamed Abd Al-Fattah, Assistant Professor of Chest Diseases, Ain Shams University, and Prof.Ayman Abd Al-Hameed Farghaly, for her continuous supervision and great help.

I am indebted to every patient included in this study and also their parents for their corporation and their trust. I wish them all the best of health and happiness.

I am deeply grateful to my family, colleagues and friends.

Lastly, I would like to thank everyone who helped in completing this work.

Alsayyed Abd Al-Beset

List of Contents

и	-	и	п	
4	Marie 1		31	
•	101		•	

Page

•	List of Contents
•	List of Abbreviations III
•	List of TablesVII
•	List of FiguresXI
•	Introduction
•	Aim of the Work6
•	Review of Literature
	\circ Chronic obstructive pulmonary disease7
	o Management of COPD
	o Pulmonary function tests
	 Forced oscilation technique and impulse oscillometry
	○ Lung volume reduction surgery73
	O Histoacrayl glue 82
•	Patients and Methods85
•	Results 93
•	Discussion
•	Summary
	Conclusion 130

_	♦ INTRODUCTION ♦	-
•	Recommendations	131
•	References	132
•	Arabic Summary	

♦ INTRODUCTION ♦

List of Abbreviations

ABG	Arterial Blood Gases
AE	Acute Exacerbation
AUR	Acute Urinary Retention
AX	Reactance Area
Bio-BLVR	Biological Bronchoscopic Lung Volume
CBC	Reduction Complete Blood Picture
cAMP	Cyclic Adenosine Monophosphate
Ca	Capacitance
CAO	Chronic Airflow Obstruction
COPD	Chronic Obstructive Pulmonary Disease
СТ	Computed Tomography
cv	coefficient of variation
CXR	Chest X-ray
DLCO	Diffusing capacity of the lungs for
	carbon monoxide
DNA	deoxy ribonuclic acid
EBVs	Endobronchial valves
ECG	Electrocardiogram
ECHRS	European Community Health and
	Respiratory Survey
FEV1	Forced Expiratory Volume in One
	Second
FEV6	forced expiratory maneuver to
	Six-second duration
FiO2	fraction of inspired oxygen

List of Abbreviations (Cont.)

F.O.B	Fibroobtic bronchoscope
FOT	FORCED OSCILLATION TECHNIQUE
Fres	Frequencies
FVC	Forced Vital Capacity
GOLD	Global Initiative for Chronic
	Obstructive Lung Diseases
HBV	Hepatitis B virus
HCV	Hepatitis C virus
нсоз	Bicarbonate
HRCT	High Resolution Computarized
	Tomography
Hz	Hertez
IAC	Inhaled Anticholinergic
ILD	Interstitial lung disease
INH	Inhalation
IOS	Impulse Oscillometry
LA	Left atrial diameter
КРа	Kilopascal
LVRC	Lung Volume Reduction Coin
LVRS	Lung Volume Reduction Surgery
MEFV	maximum expiratory flow-volume
Mg	Milligram
MHZ	Mega Hertz

MIFV..... maximum inspiratory flow-volume

Min......Minute

INTRODUCTION .

List of Abbreviations (Cont.)

MMEF......Maximum mean expiratory flow MRC..... Medical Research Council MWD.....Minute Walk Distance mmHgMillimeter mercury **NOTT**.....Nocturnal Oxygen Therapy Trial NSAID......Nonsteroidal Anti-Inflammatory Drug PaO2.....Oxygen Tension PaCO2Carbon Dioxide Tension **PFT**.....Pulmonary Function Test PHThe acidity or alkalinity of blood **PRN**pseudorandom noise **PSTF**..... Preventive Services Task Force **R5**.....Resistance at 5 Hz **R20**..... Resistance at 20 Hz Rrs..... Resistance RV Residual Volume SaO2.....Oxygen Saturation SecSecond

SD.....Standard deviation

SGOT..... Serum glutamate-oxalacetate

Transaminase

SGPT..... Serum glutamate- pyruvate

Transaminase

TLC.....Total Lung Capicity

List of Abbreviations (Cont.)

TORCH..... The Towards a Revoluton in COPD Health

USAUnited States of America

X5...... Reactance

Xrs..... Reactance

WBC.....White blood cells

WHOWorld Health Organization

6-MWD.....6-Minute-walk distance

6-MWT.....6-Minute-walk test

List of Tables

Table No.	Title Page
Table (1):	CLASSIFICATION OF SEVERITY OF AIR FLOW LIMITATION IN COPD8
Table (2):	COPD and it is differential diagnosis21
Table (3):	GOLD SPIROMETRIC CRITERIA FOR COPD SEVERITY
Table (4):	Demographic and Clinical data of Patients (n=30)
Table (5):	Results of CXR and HRCT examination before and after the procedure
Table (6):	Comparison between cases before and after the procedure as regards dyspnea score according to (Borg Scale) and 6 min walk test:95
Table (7):	Comparison between cases before and after the procedure as regards spirometry:
Table (8):	Comparison between cases of before and after the procedure as regards IOS

$\overline{}$		_
•	INTRODUCTION	•

Table (9):	comparison between cases before and after the procedure as regards arterial blood gases:
Table (10):	_
impulse osc	Correlation between spirometric and cillometric (IOS) measures before the
Table (12):	Correlation between spirometric and impulse oscillometric (IOS) measures after the procedure:
Table (13):	Change in outcome measures as percentage of pre-procedure value in patients with diffuse emphysema or emphysematous bullae:

♦ INTRODUCTION ♦

List of Figures

Fig. No.

Title

Page

Fig. (1):	Cells and Mediators Involved in the	
	Pathogenesis of COPD	9
Fig. (2):	Maximum expiratory and inspiratory flow-volume curves	13
Fig. (3):	Schematic diagram of the impulse oscillometry system	49
Fig. (4):	Respiratory resistance versus frequency	53
Fig. (5):	Respiratory resistance	53
Fig. (6):	Reactance values in a healthy subject showing the "C" (compliance) and "I" (inertance) portions of reactance, area of reactance (A_X) and resonant frequency (F_{res})	55
Fig. (7):	How to do IOS	61
Fig. (8):	Characterstic curves of IOS	71
Fig. (9):	Endobronchial valves located in the segmentary bronchi	77
Fig. (10):	A Broncus Airway Bypass Stent compared in size to the head of a pencil	79
Fig. (11):	Schematic of thermal vapor ablation for lung lesions	80
Fig. (12):	Fully deployed nitinol RePneu lung volume reduction coil	81

INTRODUCTION	

Fig. (13): Histoacrayl glu	e84
-----------------------------------	-----

List of Figures (Cont.)

F	ig. No. Title
Page	
Fig. (14):	Fibroptic bronchoscopy87
Fig. (15):	The cardiotouch 3000 boint 88
Fig. (16):	The Jaeger MasterScreen Impulse Oscillometry System89
Fig. (17):	Subject performing impulse oscillometry90
Fig. (18):	Comparison between cases before and after the procedure as regards dyspnea score
Fig. (19):	Comparison between cases before and after the procedure as regards 6-minute walk test
Fig. (20):	Comparison between cases of diffuse emphysema before and after the procedure as regards spirometry99
Fig. (21):	Comparison between cases of emphysematous bullae before and after the procedure as regards spirometry
Fig. (22):	Comparison between cases of diffuse emphysema before and after the procedure as regards impulse oscillometry

	♦ INTRODUCTION ♦	
Fig. (23):	Comparison between cases of emphysamtous bullae before and after the procedure as regards impulse oscilometry	. 103
Fig. (24):	Comparison between cases before and after the procedure as regards ABG	. 105
SIES PE	List of Figures	0
F	ig. No. Title	
Page		
Fig. (25):	Box plot showing the spirometric measures before and after the procedure.	. 107
Fig. (26):	Box plot showing the impulse oscillometric (IOS) measures of airway resistance before and after the procedure	. 108
Fig. (27):	Box plot showing the impulse oscillometric (IOS) measures of lung reactance before and after the procedure.	. 109
Fig. (28):	Box plot showing the results of arterial blood gases before and after the procedure.	. 110
Fig. (29):	Box plot showing the results of the 6-minute walk test (6MWT) before and after the procedure	. 111
Fig. (30):	Scatter plot showing the correlation between the FVC and R5 before the procedure in patients with	
	emphysematous bullae	.113

•	INTRODUCTION	_
	IN I HUDUC HUN	_

Fig. (31):	Scatter plot showing between the FVC and procedure in patients emphysema	d R5 after the
	List of Figur	es
F	ig. No.	Title
Page		
Fig. (32):	Scatter plot showing between the FEV1 an procedure in patients emphysema	d X5 after the
Fig. (33):	Box plot showing to outcome measures as pre-procedure values in diffuse emphysema or outcome.	percentage of n patients with emphysematous
	bullae	118

Introduction

Chronic Obstructive Pulmonary Disease (COPD), a common preventable and treatable disease, is characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patients(1).

COPD is the 4th leading cause of death worldwide, yet 75% of those affected remain untreated this can be changed! The World Health 600 million Organisation estimates people worldwide have COPD. COPD is projected to be the third leading cause of death by 2020 with only heart disease and cerebrovascular disease accounting for more deaths. Lung cancer, stomach cancer and HIV will be the 5th, 8th and 9th most common causes of death respectively. Higher prevalence rates for COPD are found in men than in women globally reflecting historic gender differences in smoking behaviour. Prevalence figures for COPD are believed to be underestimated. Sufferers tend not to seek medical advice until the disease has progressed and the condition is severe (2).