

Faculty of Science Chemistry Department

A study on the Removal of Heavy Metal Ions from the Groundwater using some Magnetic Nanocomposite Materials

A Submitted Thesis in Partial Fulfillment for the Requirements of Ph. D. Degree

In Analytical Chemistry

Presented by

Eman Al-Tohamy Motawea

Ms. Sc. in Analytical-Chemistry (2010)

Supervised by

Prof. Dr. Mostafa M.H. Khalil

Professor of Inorganic and Analytical Chemistry, Faculty of Science Ain Shams University

Dr. Al-Sayed A. Bakr


Researcher of Physical Chemistry Department of Analysis and Evaluation Egyptian Petroleum Research Institute

Prof. Dr. Yasser M. Moustafa

Professor of Organic Chemistry Department of Analysis and Evaluation Egyptian Petroleum Research Institute

Prof. Dr. Mohamed M. Yehia

Professor of GeoChemistry Central Analytical Laboratory National Water Research Center

A Study on the Removal of Heavy Metal Ions from the Groundwater using some Magnetic Nanocomposite Materials

A Thesis Submitted by Eman Al-Tohamy Motawea

For the Degree of Ph.D. of Science in Analytical Chemistry

To

Department of Chemistry Faculty of Science Ain Shams University

Approval Sheet

Name of candidate: **Eman Al-Tohamy Motawea** Degree: Ph.D. Degree in Chemistry

Thesis Title: A Study on the Removal of Heavy Metal Ions from the Groundwater using some Magnetic Nanocomposite Materials

This Thesis has been approved by:

- 1- Prof. Dr. Mostafa M.H. Khalil
- 2- Prof. Dr. Yasser M. Moustafa
- 3- Dr. Al-Saved A. Bakr
- 4- Prof. Dr. Mohamed M. Yehia

Approval

Chairman of Chemistry Department

Prof. Dr. Hamed Ahmed Younis Derbalah

First and last thanks to **Allah** who give me the power to go forward in a way illuminated with his merciful guidance. I would like to express my thanks to **Prof. Dr.**Mostafa M. H. Khalil, Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University, for giving me the chance to be one of his students and for his generous advices and guidance,. His deep sense of appreciation and dedication to research has been a constant source of inspiration to me. He was always kind enough to follow up the progress of the work with keen interest.

With deep regards and profound respect, I avail this opportunity to express my deep gratitude and thanks to my supervisor **Prof. Dr. Yasser M.**M. Moustafa, Professor of organic Chemistry, Analysis and Evaluation Department, Egyptian Petroleum Research Institute, for giving me the chance to be one of his students, for guiding the plan lines of the thesis, supervising the practical work and revising the manuscript, also for generous advices, valuable discussions, which helped me greatly. His continuous help, encouragement, and guidance helped me all the time of research. He did not only guide this work and find time to discuss with me but also gave me the confidence to express my ideas freely.

I would like to express my thanks to **Dr. Al-Sayed M. A. Bakr** Researcher of physical Chemistry, Analysis and Evaluation Department, Egyptian Petroleum Research Institute, for his suggesting the title and plan lines of the thesis, encouragements, supervising the practical work, for helping and revising the manuscript.

I am so grateful to **Prof. Dr. Mohamed M. M. Yehia** Professor of Chemistry, Central Analytical Laboratory, National Water Research Center, for his supervising in this thesis.

I am thankful to all staff members and colleagues, in Central Analytical Lab, Egyptian Petroleum Research Institute for their support and appreciated help.

I would also like to thank SigmaXL Inc., for providing a complimentary license of Response Surface Methodology software.

I would be nowhere without the support of my family. "Thank You" is an understatement when it comes to what they have done, and still are doing, for me. I'd like to thank my, Dad, Mom, sister and brother for pushing me to always try to be better.

CONTENTS

Content	Page
Acknowledgement	i
List of abbreviations	iv
List of Tables	V
List of Figures	ix
Aim of the work	
Abstract	xviii
Chapter I: Introduction & Literature Survey	
I.1. General introduction to groundwater	1
I.2. Adsorption of heavy metals by nano-metal	
oxides.	6
I.3. Adsorption of heavy metals by magnetic nanocomposite.	11
I.4. Algenic acid as a natural biopolymer adsorbent	13
I.5. Adsorption of Fe ²⁺ from water.	17
I.6. Adsorption of Mn ⁺² from water	22
I.7. Adsorption of Cu ⁺² from water	24
I.8. Theoretical background of adsorption processes	27
I.8.1 Adsorption kinetics	29
I.8.2 Adsorption isotherm	31
I.8.3 Adsorption thermodynamics	34
I.9. Optimization by response surface methodology	36
Chapter II: Experimental	
II.1. Materials	39
II.2. Preparations	40
II.2.1. Preparation of magnetite nanoparticles	40
$(Nano-Fe_3O_4)$	

II.2.2. Preparation of nickel ferrite	41
nanoparticles (Nano-NiFe ₂ O ₄)	
II.2.3. Preparation of magnetite-alginate	43
nanocomposite beads and nickel ferrite-	
alginate nanocomposite beads	
II.2.4. Preparation of calcium-alginate beads	45
II.3. Structural characterization	47
II.3.1. X-Ray diffraction analysis (XRD)	47
II.3.2. Transmission electron microscope	47
(TEM)	
II.3.3. Dynamic light scattering spectroscopy	47
(DLS)	
II.3.4. Scanning electron microscope (SEM)	48
II.3.5. Fourier transform infrared spectroscopy	48
(FT-IR)	
II.3.6. Vibrating sample magnetometer (VSM)	48
II.3.7. Thermal gravimetric analyses (TGA)	49
II.3.8. Atomic absorption spectroscopy (AAS)	49
II.4. Adsorption experiments	49
II.4.1. Adsorption kinetic study	50
II.4.2. Adsorption isotherm study	51
II.4.3. Adsorption thermodynamic study	51
II.4.4. Design of experiments	52
II.5. Area of investigation	53
Chapter III: Results & discussion	
III.1. Structural characterization	55
III.1.1. X-Ray Diffraction analysis (XRD)	55
III.1.1.1. Ca-alginate, Fe ₃ O ₄ -alginate	55
nanocomposite and Fe ₃ O ₄	
III.1.1.2. NiFe ₂ O ₄ -alginate nanocomposite	56
and NiFe ₂ O ₄	
III.1.2. Transmission Electron Microscope	58
(TEM)	

III.1.3. Dynamic light scattering spectroscopy (DLS)	59
III.1.4. Scanning Electron Microscope (SEM)	62
III.1.5. Fourier transform infrared	64
spectroscopy (FT-IR)	
III.1.5.1. Fe ₃ O ₄ , alginate and Fe ₃ O ₄ -alginate	64
nanocomposite	
III.1.5.2. NiFe ₂ O ₄ and NiFe ₂ O ₄ -alginate	66
nanocomposite	
III.1.6. Vibrating Sample Magnetometer	68
(VSM)	
III.1.6.1. Fe ₃ O ₄ and Fe ₃ O ₄ -alginate	68
nanocomposite	
III.1.6.2. NiFe ₂ O ₄ and NiFe ₂ O ₄ -alginate	70
nanocomposite	
III.1.7. Thermal gravimetric analysis (TGA)	72
III.1.7.1. Fe ₃ O ₄ , Fe ₃ O ₄ -alginate	72
nanocomposite and alginate	
III.1.7.2. NiFe ₂ O ₄ and NiFe ₂ O ₄ -alginate	73
nanocomposite	
III.2. Adsorption results	75
III.2.1. Adsorption of Fe ²⁺	75
III.2.1.1. Statistical analysis and analysis of	82
variance (ANOVA) of models	
III.2.1.2. Response surface plot of model	94
factors and removal % of Fe ²⁺	
III.2.1.2.1. Effect of Solution pH	94
III.2.1.2.2. Effect of initial iron	98
concentration	
III.2.1.2.3. Effect of adsorbent dose	101
III.2.1.2.4. Effect of contact time	103
III.2.1.3. Optimum conditions for Fe ²⁺	105
removal	
III.2.1.4. Kinetics and adsorption mechanism	106
III.2.1.5. Adsorption isotherm	115

III.2.1.6. Adsorption thermodynamic	121
III.2.2. Adsorption of Mn ²⁺	124
III.2.2.1. Statistical analysis and analysis of	131
variance (ANOVA) of models	
III.2.2.2. Response surface plot of model	142
factors and removal % of Mn ²⁺	
III.2.2.2.1. Effect of Solution pH	142
III.2.2.2.2. Effect of initial Mn ²⁺	144
concentration	
III.2.2.2.3. Effect of adsorbent dose	147
III.2.2.2.4. Effect of contact time	149
III.2.2.3. Optimum conditions for Mn ²⁺	151
removal	
III.2.2.4. Kinetics and adsorption mechanism	152
III.2.2.5. Adsorption isotherm	160
III.2.2.6. Adsorption thermodynamic	165
III.2.3. Adsorption of Cu ²⁺	168
III.2.3.1. Statistical analysis and analysis of	175
variance (ANOVA) of models	
III.2.3.2. Response surface plot of model	186
factors and removal % of Cu ²⁺	
III.2.3.2.1. Effect of Solution pH	186
III.2.3.2.2. Effect of initial iron	189
concentration	
III.2.3.2.3. Effect of adsorbent dosage	191
III.2.3.2.4. Effect of contact time	193
III.2.3.3. Optimum conditions for Cu ²⁺	196
removal	
III.2.3.4. Kinetics and adsorption mechanism	196
III.2.3.5. Adsorption isotherm	204
III.2.3.6. Adsorption thermodynamic	210
III.3. Application of real samples treatment	214
Summary and conclusion	220

References	227
Arabic summary	1

LIST OF ABBREVIATIONS

Nanosized metal oxides **NMOs** NCs **Nanocomposites HFO** Hydrated ferric oxide MB Methylene blue MO Methyl orange **MFN** Magnetic ferrite nanoparticle world health organization WHO NO Natural Quartz NB Natural Bentonite **PIOMN** pectin-iron oxide magnetic nanocomposite **RSM** Response surface methodology **CCD** Central composite design ANOVA Analysis of variance Transmission electron microscope TEM SEM Scanning electron microscope DLS Dynamic light scattering spectroscopy **VSM** Vibrating sample magnetometer

LIST OF TABLES

Table		Page
Table (1)	Chemicals reagents.	39
Table (2)	Dry weight of used beads.	46
Table (3)	Magnetic parameters.	71
Table (4)	Experimental range and level for input variables of Fe ²⁺ removal by Fe ₃ O ₄ -alginate, NiFe ₂ O ₄ -alginate and Ca-alginate.	75
Table (5)	Experimental range and level for input variables of Fe^{2+} removal by nano- Fe_3O_4 and nano- $NiFe_2O_4$.	76
Table (6)	CCD matrix for the experimental design and predicted response for Fe^{2+} removal by Fe_3O_4 -alginate.	
Table (7)	CCD matrix for the experimental design and predicted response for Fe ²⁺ removal by NiFe ₂ O ₄ -alginate.	78
Table (8)	CCD matrix for the experimental design and predicted response for Fe ²⁺ removal by Ca-alginate.	79
Table (9)	CCD matrix for the experimental design and predicted response for Fe^{2+} removal by nano- Fe_3O_4 .	80
Table (10)	CCD matrix for the experimental design and predicted response for Fe^{2+} removal by nano-NiFe ₂ O ₄ .	81
Table (11)	Models Summary statistics for the removal	83

Of He	

Table (12)	Regression model results for Fe ²⁺ removal.	85
Table (13)	ANOVA analysis of the model.	86
Table (14)	Kinetic parameters of the pseudo-first- and second-order models for the adsorption of Fe ²⁺ .	110
Table(15)	Adsorption isotherm parameters of Langmuir and Freundlich models for the adsorption of Fe^{2+} .	119
Table(16)	Thermodynamic constants for the adsorption of Fe ²⁺ .	123
Table (17)	Experimental range and level for input variables of Mn ²⁺ removal by Fe ₃ O ₄ -alginate, NiFe ₂ O ₄ -alginate and Ca-alginate.	125
Table (18)	Experimental range and level for input variables of Mn^{2+} removal by nano-Fe ₃ O ₄ and nano-NiFe ₂ O ₄ .	125
Table (19)	CCD matrix for the experimental design and predicted response for Mn^{2+} removal by Fe_3O_4 -alginate.	126
Table (20)	CCD matrix for the experimental design and predicted response for Mn ²⁺ removal by NiFe ₂ O ₄ -alginate.	127
Table (21)	CCD matrix for the experimental design and predicted response for Mn ²⁺ removal by Ca-alginate.	128
Table (22)	CCD matrix for the experimental design and predicted response for Mn ²⁺ removal	129

	by nano-Fe ₃ O ₄ .	
Table (23)	CCD matrix for the experimental design and predicted response for Mn^{2+} removal by nano-NiFe ₂ O ₄ .	130
Table (24)	Models Summary statistics for the removal of Mn ²⁺ .	132

- **Table (25)** Regression model results for Mn²⁺ removal 133
- **Table (26)** ANOVA analysis of the model.
- **Table (27)** Kinetic parameters of the pseudo-first, 156 second-order models and Fickian diffusion law for the adsorption of Mn²⁺.
- **Table (28)** Adsorption isotherm parameters of 163 Langmuir and Freundlich models for the adsorption of Mn²⁺.
- **Table (29)** Thermodynamic constants for the 167 adsorption of Mn²⁺.
- **Table (30)** Experimental range and level for input 168 variables of Fe₃O₄-alginate, NiFe₂O₄-alginate and Ca-alginate.
- **Table (31)** Experimental range and level for input 169 variables of nano-Fe₃O₄ and nano-NiFe₂O₄.
- **Table (32)** CCD matrix for the experimental design 170 and predicted response for Cu²⁺ removal by Fe₃O₄-alginate.
- **Table (33)** CCD matrix for the experimental design and predicted response for Cu²⁺ removal by NiFe₂O₄-alginate.