

MR CARTILAGE IMAGING IN KNEE JOINT OSTEOARTHRITIS

Thesis

Submitted for partial fulfilment of M.D. degree in Radiodiagnosis

By;

Taghreed Elsaid Elsayed Ebada

M.B., B.CH., M.Sc. Radiodiagnosis
Faculty of medicine, Ain Shams University

Supervision of;

Dr. Eman Soliman Metwally

Professor of Radiodiagnosis
Faculty of medicine, Ain Shams University

Dr. Mostafa Mahmoud Gamal Eddin

Professor of Radiodiagnosis
Faculty of medicine, Ain Shams University

Dr. Yosra Abdelzaher Abdullah

Associate Professor of Radiodiagnosis Faculty of medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Acknowledgement

I would like to express my deepest gratitude to Prof. Dr. Eman Soliman, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for spending her valuable time revising this work and for her kind supervision althrough.

I am very grateful to Prof. Dr. Mostafa Mahmoud, Associate Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his kind help.

I should also thank Prof. Dr. Yosra Abdelzaher, Associate Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her effort and for her valuable advice and meticulous checking.

Many thanks are due to Prof. Dr. Yasser Abd Elazeem, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, as well as Prof. Dr. Khaled Abo Elfotouh, Chief of MRI Unit at Eldemerdash Hospital and Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for their support and generous concern.

I am also grateful to all other people who have helped me accomplish this work including colleague radiologists, radiology technicians at MRI Unit, Eldemedash Hospital, patients included in the study and, last but not least, my family.

CONTENTS

<u>Chapter</u>	<u>Page</u>
List of abbreviations	i
List of figures	iii
List of tables	v
Introduction and aim of the work	1
Gross anatomy of the knee joint	4
Structure of articular cartilage	11
MR anatomy of the knee joint	17
Pathology of osteoarthritis	37
MR cartilage imaging findings in Knee joint osteoarthritis	47
Patients and methods	79
Results	85
Illustrative cases	91
Discussion	107
Summary and conclusion	119
References	121
Arabic summary	133

LIST OF ABBREVIATIONS

2D two dimensional3D three dimensional

ACL anterior cruciate ligament ADC apparent diffusion coefficient

B₀ main magnetic field b-FFE balanced fast field echo

BLOKS Boston Leeds osteoarthritis of the knee score

BML bone marrow lesions

COMP cartilage oligomeric matrix protein
DEFT driven equilibrium Fourier transform

DESS dual echo steady-state

DRIVE FSE with driven equilibrium pulses

DTI diffusion tensor imaging
DWI diffusion weighted imaging

ETL echo train length

FCL fibular collateral ligament FEMR fluctuating equilibrium MRI

FFE fast field echo

FIESTA fast imaging employing steady stateacquisition

FISP fast imaging with steady state precession

FLASH fast low angle shot

FOV field of view FSE fast spin echo

GRE gradient recalled echo

IDEAL iterative decomposition of water and fat with echo

asymmetry and least-squares estimation

IM Intermediate weighted sequence

ISK index of severity for osteoarthritis of the knee

KL Kellgren-Lawrence

KOSS knee osteoarthritis scoring system LFTC lateral femoro-tibial compartment

MCL medial collateral ligament

MFTC medial femoro-tibial compartment

MOAKS MRI osteoarthritis knee score

ms milli second

MT magnetization transfer

No Number

OA Osteoarthritis

P probability of error

PCL posterior cruciate ligament

PD proton density

PFC patello-femoral compartment

PSIF time reversed FISP

Spearman correlation coefficient

ROI region of interest

SPACE sampling perfection with application-optimized

contrast using different flip-angle evolutions

SPGR spoiled gradient recalled echo

SS sub-spinous

SSFP steady state free precession

T Tesla

T1 Spin lattice relaxation time
 T2 Spin spin relaxation time
 T1-FFE T1-weighted fast field echo

TE echo times

TR repetition times

UTE Ultrashort echo time

WOMAC Western Ontario and McMaster University

osteoarthritis index

WORMS whole-organ magnetic resonance imaging scoring

LIST OF FIGURES

Figure	<u>Title</u>	Page
1	Posterior view, some of medial and lateral bursae	6
	of the knee	
2	Superior aspect of left tibia	9
3	Diagram showing proteoglycan complexes	12
4	Different zones of cartilage	14
5	Axial mid patellofemoral compartment	18
6	Axial inferior patellofemoral compartment	19
7	Axial femorotibial joint space	21
8	Axial proximal tibia immediately below	22
	femorotibial joint line	
9	Axial proximal tibia/fibula	23
10	Sagittal medial aspect of knee	24
11	Sagittal medial aspect of knee through posterior	25
	horn of medial meniscus	
12	Sagittal intercondylar notch	26
13	Sagittal intercondylar notch	27
14	Sagittal lateral femorotibial compartment	28
15	Sagittal lateralmost aspect of knee	29
16	Mid coronal plane	30
17	Double oblique intercondylar notch	31
18	Normal variants and imaging pitfalls	32
19	Differentiating iliotibial band friction syndrome	33
	and lateral parapatellar joint fluid	
20	Osteochondral fragment of normal cartilage	34
21	Axial 2D T2 and IM weighted cartilage images	35
22	Schematic representation of sequential changes of	42
	OA	
23	dGEMRIC imaging	49
24	T1ρ relaxation map	50
25	T2 color map	51
26	Sodium MR imaging	52
27	UTE MR imaging	53

28	Quantitative MT MR imaging	54
29	ADC map	56
30	FSE images	57
31	Axial 2D T2 weighted FSE image	59
32	Comparison of 3D and 2D FSE imaging	59
33	3D SPACE water image	60
34	IDEAL GRASS image	63
35	T2 weighted and FLASH images	64
36	3D SPGR image	65
37	3 T DESS and FSE images	66
38	DEFT imaging	67
39	FEMR imaging	69
40	3D water excitation bSSFP	70
41	3D VIPR-SSFP images	70
42	3D water excitation b SSFP image	72
43	MR imaging at 7 T	74
44	MR arthrography	75
45	Grades of cartilage damage	77
46	Subregional division of patella in axial plane	81
47	Anatomical delineation of femur and tibia in	82
	sagittal plane	
48	Anatomical delineation of femur and tibia in	82
	coronal plane	
-	Case 1	91
-	Case 2	93
-	Case 3	94
-	Case 4	95
-	Case 5	97
-	Case 6	99
-	Case 7	101
-	Case 8	103
-	Case 9	105
-	Case 10	106

LIST OF TABLES

Table	<u>Title</u>	Page
1	Gradient echo sequences by major MRI	62
	manufacturers	
2	Modified Noyes score	78
3	MRI sequence parameters used in the study	80
4	Comparison between any compartmental cartilage	85
	loss in each KL grade	
5	Correlation between KL grade and compartmental	87
	sum of any cartilage loss	
6	Correlation between sum of PF cartilage loss score	87
	and other compartmental joint features	
7	Correlation between sum of MFT cartilage loss	88
	score and other compartmental joint features	
8	Correlation between sum of LFT cartilage loss	89
	score and other compartmental joint features	
9	Correlation between Lequesne index score and	90
	compartmental sum of cartilage scores	

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION

Hyaline cartilage is an important intra-articular tissue that may be involved in degenerative change of knee joint. Damaged cartilage rarely heals spontaneously, and its subsequent degeneration in association with degeneration of other articular tissues may lead to knee osteoarthritis (OA), which is a cartilaginous and a whole-organ disease (*Felson*, 2006).

OA is the most frequent form of arthritis, with major implications for individual and public health care without effective treatment available (*Roemer et al.*, 2011). It is an important health concern, as joint disease is the single largest cause of disability in elderly people (*Hardingham and Bayliss*, 1990). Symptomatic OA causes substantial physical and psychosocial disability (*Hunter*, 2011).

From a rheumatologist's perspective, cartilage imaging is most significant in the setting of OA (*Hunter*, 2011). The field of imaging in OA and cartilage has evolved rapidly, and, despite the continued lack of effective therapies, there is hope that imaging might be in a position to help drive a therapeutic breakthrough (*Roemer et al.*, 2011).

Many imaging methods are available to assess articular cartilage. Conventional radiography can be used to detect gross loss of cartilage, evident as narrowing of the distance between the two adjacent bones of a joint (*Boegard et al.*, 1998), but it does not image cartilage directly. Secondary changes such as osteophyte formation can be seen, but conventional radiography is insensitive to early chondral damage (*Gold et al.*, 2009). Arthrography, alone or combined with conventional radiography or CT, is mildly invasive and provides information limited to contour of cartilage surface (*Coumas and Palmer*, 1998). Conventional MRI sequences do not provide a comprehensive assessment of cartilage, lacking either in spatial resolution or

specific information about cartilage physiology (Gold et al., 2009).

The field of joint imaging and particularly MR imaging, has evolved rapidly owing to technical advances and application of these to field of clinical research. Cartilage imaging certainly is at the forefront of these developments (*Roemer et al.*, 2011).

Recently, MR imaging has become the most important modality for assessment of pathologic changes in knee cartilage, in both clinical and research environments. One of the major advantages of MR imaging is that it allows the manipulation of contrast to highlight different tissue types. The new surgical and pharmacologic options available to treat damaged cartilage, and the need to monitor effects of treatment, have led to development of various MR imaging techniques that allow morphologic assessment of cartilage, quantification of its volume, and evaluation of its biochemical composition (*Gold et al.*, 2009).

Pharmacologic agents proposed to preserve hyaline cartilage or to treat damage to cartilage include dietary supplements. effectiveness for slowing halting Their progression of cartilaginous degeneration, decreasing knee pain, and improving joint function is debated (Black et al., 2009). Mechanism of activity of these agents remains obscure, but these continuing potentially research into and other chondroprotective agents will require techniques to monitor both the morphologic status and the composition of hyaline cartilage (Crema et al., 2011).

Various reparative and reconstructive surgical techniques are available to treat traumatic and degenerative cartilaginous damage (*Gudas et al.*, 2005 & Knutsen et al., 2007).

Even though clinical outcome of clinical and surgical treatments is the most important outcome parameter in trials,

morphologic and compositional quality of cartilage can provide valuable information about progression of degeneration or durability of repair tissue. MR imaging, method of choice for detecting morphologic and compositional alterations in knee cartilage, is therefore useful for monitoring effects of therapies for OA and cartilage injury. Current MR imaging techniques to assess morphologic status of cartilage include conventional spinecho (SE) and gradient-recalled echo (GRE) sequences, fast SE sequences, and more advanced isotropic three-dimensional (3D) SE and GRE sequences Compositional assessment techniques include T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC), T1p imaging, sodium imaging, and diffusion-weighted imaging. These techniques allow detection of morphologic defects in articular cartilage of the knee and are commonly used in research for semiquantitative and quantitative assessments of cartilage. These techniques may be used in various combinations and at various magnetic field strengths in clinical and research settings to improve characterization of changes in cartilage (Crema et al., 2011).

AIM OF THE WORK:

This study aims to describe articular cartilage changes as assessed by MR cartilage imaging in knee joint osteoarthritis.