Ain Shams University

Faculty of Science

Physics Department

Abbassia, Cairo, 11566 Egypt

Environmental Analysis and Radioactivity Assessment of Samples from South Egypt Region for Industrial Applications

Thesis

Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science

(Physics)

 $\mathbf{B}\mathbf{v}$

Ahmed Mahmoud El-Saied Ali Dabour

Supervisors

1- Prof. Dr. Samir Usha El-Kameesy

Prof. of Nuclear Physics, Faculty of Science, Ain Shams University

2- Prof.Dr. Sofia Yahia Afifi

Prof. of Geochemistry, Nuclear Materials Authority

3- Dr. Ashraf Hamid Mohammed

Asso.Prof. of Nuclear Physics Hot laboratories Center, Atomic Energy Authority

Acknowledgment

I would like to express my sincere thanks to Prof Dr. S.U.El-kameesy, Physics Department, faculty of science, Ain Shams University, for sustained supervision, beginning by selection of point of research and ending by his careful reading of manuscript. Also for this encouragement guidance and support and generosity throughout all stages of this work.

I am deeply thanks to Prof Dr. S.Y. Afifi *Nuclear Materials Authority (NMA)*, for supervision, selection of point, encouragement and her science help during the preparation of this thesis, and her careful reading of manuscript.

I am deeply thanks to Dr. A. Haimd *Radiated Pollution Department, Hot Laboratories Center, Atomic Energy Authority,* for supervision, encouragement and her faithful help during the work in thesis.

Finally, I would like to thank everyone helped me in this work, for ideal cooperation.

Ahmed Mahmoud El-Saied Ali Dabbour

Contents

Abstract

Gene	eral introduction and the aim of the work	1
Chapter 1:	Sources of Background Radiation	
1.1.	Terrestrial radiations	5
1.2.	The radioactivity in water	6
1.3.	Air born radioactivity	8
1.4.	Cosmic radiations	10
1.5.	Artificial radionuclides	11
1.6.	Radon	12
Chapter 2:	Theoretical Aspects	
2.1	Introduction	14
2.2	The Basic Dosimetric Quantity	15
2.2.1	Absorbed Dose	15
2.3	Protection Quantities	16
2.3.1	Mean Absorbed Dose	17
2.3.2	Equivalent Dose	17
2.3.3	Effective Dose	20
2.4	Operational Quantities	22
2.4.1	Ambient Dose Equivalent	24
2.4.2	The Directional Dose Equivalent	25
2.4.3	Personal Dose Equivalent	25
2.5	Relationship between Quantities for Radiological	Protection
	and Monitoring Purposes	26
2.5.1	Calibration Methods	28
2.6	Flux	29
2.7	Gamma ray properties and the reaction with the mat	ter29
2.7.1	photoelectric effect	30
2.7.2	Compton scattering	32
2.7.3	Pair production	34
2.7.4	Gamma attenuation coefficient	37
2.7.4.1	Absorber mass thickness	38
2.7.4.2	Buildup factor	39

Chapter3: Biological effect and radiation

3.1	Basic human physiology	40
3.2	Cell biology	41
3.3	Sequential Pattern of Biological Effects	42
3.3.1	Latent Period	42
3.3.2	period of Demonstrable Effect on Cells and Tissues	42
3.3.3	Recovery period	42
3.4	The interaction of the radiation with cells	43
3.5	Radon and its hazards	45
3.6	The somatic and hereditary effects of radiation	46
3.7	The system of dose limitation	47
3.7.1	The role of the ICRP	47
3.8	The external and internal exposure	48
Chapte	r 4: Experimental Techniques and Measureme	<u>ents</u>
4.1	Detection technique	50
4.1.1	The detector	50
4.1.2	High purity germanium detectors	52
4.1.3	High voltage power supply	54
4.1.4	Preamplifier	54
4.1.5	Amplifier	55
4.1.6	Multichannel analyzer	55
4.2	Energy calibration	56
4.3	Detection efficiency	57
4.4	Experimental setup	59
4.5	Material and Methods	62
4.6	Description of the X-Ray Fluorescence System	63
4.7	Sample Preparation for X-Ray Fluorescence	63
4.8	neutron activation analysis	64
Chapte	r 5: Results and discussions	
5.1	neutron activation analysis	73
5.2	The trace element analysis	75
5.3	The radioactivity concentration in samples	77
5.4	Radiation Health Hazards	79

Arabic summary	107
Publication	93
References	85
Conclusion	83

List of Tables		
Table (2-1): Radiation weighting factors	19	
Table (2-2): Organ/tissue weighting factors	21	
Table (2-3): The different operational dose quantities and their use	28	
Table (3-1): Probability coefficients for stochastic effects	47	
Table (3-2): Occupational annual limit for intake for several radionuclides	49	
Table (4-1): Relative intensities of gamma-rays from ²²⁶ Ra with its short-Lived gamma-emitting daughters	61	
Table (5-1): Results of the NAA mean of the comparator method for several element in ppm of the sample weight.	74	
Table (5-2): Trace elements concentration (ppm), for collected samples from Abu Rusheid area, Southeastern Desert of Egypt.	76	
Table (5-3): The calculated specific activities for the ⁴⁰ K, ²³⁸ U and ²³² ThMeasurements (Bq/kg).	78	
Table (5-4): The radium equivalent, the external hazard index, and the dose rate in nGy/h and the effective dose in mSvy ⁻¹ for the studied samples.	83	

List of Figures	
Fig. (a): Location map and detailed geologic map of Abu Rushied area, South Eastern Desert, Egypt	3
Fig. (2.1): Relationship between physical protection and operational quantities	16
Fig. (2.2): Radiation weighting factors, wR, for external neutron exposure for neutrons of various energies	20
Fig. (2.3): Diagram of an expanded (a) and an oriented (b) radiation field	24
Fig. (2.4): The mechanism of photoelectric interaction	31
Fig. (2.5): The relationship between the photoelectric cross section and a) Photo energy, (b) atomic number of material	32
Fig. (2.6): The Compton scattering mechanism	33
Fig. (2.7): The mechanism of pair production	35
Fig. (2.8): The relative importance of the three major types of gamma ray interactions. The lines show the value of Z and hv for which the two neighboring effects are just equal	36
Fig. (4-1): Depletion depth as a function of impurity concentration and applied voltage for planer diodes of high-purity germanium.	53
Fig. (4-2): Block diagram of the HPGe detector setup	60

Fig. (4-3): The absolute efficiency energy curve for soil	61
11g. (4-3). The absolute efficiency energy curve for som	01
Fig. (4.4): Diagram illustrating the process of neutron	65
capture by a target nucleus followed by the	
emission of gamma rays	
Fig. (4.5): A typical reactor neutron energy spectrum	66
showing the various components used to describe	
the neutron energy regions.	
Fig. (4.6): Gamma-ray spectrum showing several short-lived	69
elements measured in a sample of pottery	
irradiated for 5 seconds, decayed for 25 minutes,	
and counted for 12 minutes with an HPGe	
detector.	70
Fig. (4.7): Gamma-ray spectrum from 0 to 800 keV showing	70
medium- and long-lived elements measured in a sample of pottery irradiated for 24 hours,	
decayed for 9 days, and counted for 30 minutes	
on a HPGe detector.	
Fig. (4.8): Gamma-ray spectrum from 800 to 1600 keV	70
showing medium- and long-lived elements	70
measured in a sample of pottery irradiated for 24	
hours, decayed for 9 days, and counted for 30	
minutes on a HPGe detector.	
Fig. (5.1): The activity concentration of radionuclides in the	79
samples	
^	

ABSTRACT

The aim of this thesis is to utilize the nondestructive neutron activation (NA) method for the analysis of six representative samples collecting from Abu Rasheid area using the Second Egyptian Research Reactor (2 MW) in the Atomic Energy Authority in Inshas. Several strategic and important elements are found in the investaged samples (Zr, Zn, Mn and Cr). These elements are necessary for many future industrial development.

Natural radioactivity levels for eighteen samples from Abu Rusheid Area in South Eastern Desert of Egypt have been carried out. The concentrations of 238 U, 232 Th and 40 K were measured by low background spectroscopy using hyper-pure germanium (HPGe) detector. The mean activities due to 238 U (226 Ra), 232 Th and 40 K radionuclides were found to be 2384 ± 106 , 1240 ± 6.6 and 819 ± 53 Bq/kg, respectively. The absorbed dose rates due to the natural radioactivity in the samples under investigation ranged from 745 ± 45 to 3836 ± 53 nGy/h which is higher than the permissible limit. The radium equivalent activity varied from 1647 ± 114 to 6172 ± 133 Bq/kg. Also, the representative external hazard index values were estimated.

From X- ray study, it is found that all the samples contain considerable strategic elements concentrations such as Barium, Zinc and Niobium

Key Words: ²³⁸U, ²³²Th, ⁴⁰K/ Norm/ South Eastern / Absorbed Dose Rates/ Radium Equivalent Activity/ External Hazard Index.

Contents

A bstract

I ntroduction

INTRODUCTION

Mining and milling of both nuclear and nonnuclear materials may cause significant environmental and occupational radiological impacts. NORM incommercial and industrial products has the potential to expose workers and members of the public to high values of radioactive doses. Radionuclides are present always in the natural environment. The main natural contributors to external exposure from gamma-radiation are uranium and thorium series together with ⁴⁰K ⁽¹⁾. Natural radiation is usually classified as either cosmic or terrestrial radiation (2). Large variations in dose rates of both cosmic and terrestrial radiation are found depending on where the measurements are made (3,4). Emanation of radon (222Rn), for example is associated with the presence of radium and its ultimate precursor uranium in the ground (5). The inhalation of its short-lived daughter produces a major contributor to the total radiation dose to exposed subjects⁽⁶⁾.

Many studies have investigated the radioactive elements in different ore samples ⁽⁷⁾. The main external source of irradiation to the human body is represented by the gamma radiation emitted by naturally occurring radio isotopes, also called terrestrial environmental radiation. These radio isotopes, such as ⁴⁰K and the radionuclides from the ²³²Th and ²³⁸U series and their decay products, exist at trace level sin all ground formations. Therefore, natural environmental radioactivity and the associated external exposure due to gamma radiation depend primarily on the geological and geographical conditions, and appear

Introduction

at different levels in the soil so reach different geological locality ⁽⁷⁾.

Abu Rushied area in South Eastern Desert of Egypt is located between a major thrust to the NE and a minor one to the SW. The main rock units encountered in metasediments, ophiolitic this are area mélange, amphibolites, metagabbros, cataclastic rocks and leucoand pink granites (8). Although South Eastern gneisses were originally identified as psammitic gneisses (9), some authors described these rocks as gneissic granites and cataclastic granites (10). The detailed geologic map of the study area is characterized by low to moderate topography (11). The tectonostratigraphic sequence of the precambrian rocks unit of the studied area are arranged properly as shown in Figure (a).

Introduction

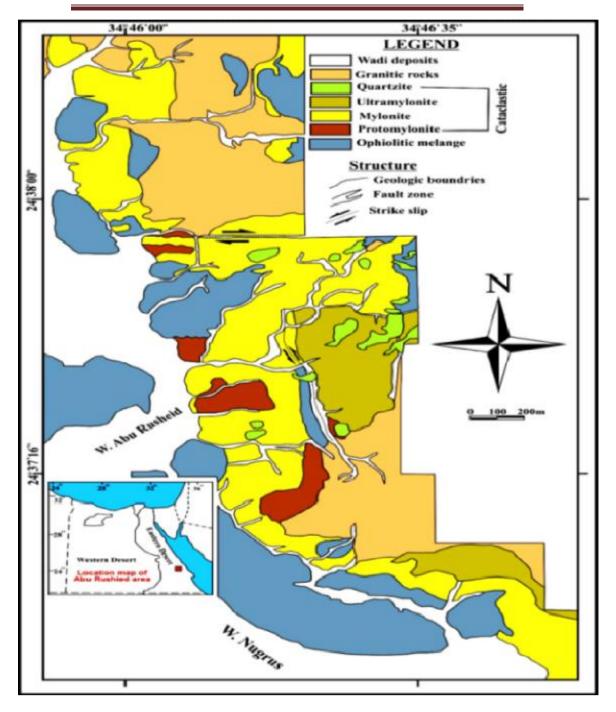


Fig.(a): location map and detailed geologic map of Abu Rushied area, South Eastern Desert, Egypt⁽¹¹⁾