Vestibular Rehabilitation Therapy in Patients with Visual-Vestibular Mismatch Disorders

Thesis submitted for partial fulfillment of Master degree in Audiology

By

Dina Mohie El-Din Housni

M.B., B.Ch.

Faculty of Medicine - Suez Canal University

Under supervision of

Prof. Dr. / Nadia Mohammed Kamal

Professor of Audiology - ENT Department Faculty of Medicine - Ain Shams University

Dr/ Hesham Mohammed Taha

Assistant Professor of Audiology - ENT Department Faculty of Medicine - Ain Shams University

Dr/ Rasha Hamdi Elkabarity

Assistant Professor of Audiology - ENT Department Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University

2014

بسرالله الرحن الرحي

وَقُلرَّبِ أَدْخِلْنِي مُدْخُل صِدْقٍ وَأَخْرِجْنِي مُخْرَجَ صِدْقٍ وَأَجْعَل لِي مِن لَدُنكَ سُلْطَكًا نَصِيرًا وَأَجْعَل لِي مِن لَدُنكَ سُلْطَكًا نَصِيرًا سورة الإسراء الية (١٨)

صدق الله العظيم

Acknowledgment

First of all, thanks to **GOD** for giving me Serenity, Courage and the Capability to accomplish this work.

Words cannot express how grateful and thankful I am to my supervisor Prof. Dr. Nadia Kamal, Professor of Audiology, Faculty of Medicine, Ain Shams University, for her great support, encouragement, help, stimulating ideas and a great deal of knowledge that I couldn't achieve this work without it.

Great thanks and respect for **Dr. Hesham Taha**, Assistant Professor of Audiology, Faculty of Medicine, and Ain Shams University for his great help support and valuable advices that guided me all over the way.

I am deeply thankful and grateful to **Dr. Rasha El-Kaharity, Assistant**Professor of Audiology, Faculty of Medicine, and Ain Shams University for her
assistance, patience, encouragement and kind care that kept me on track.

Many thanks to all my professors and colleagues of audiology unit Ain Shams University, for their continuous support and guidance.

A special and deep thanks to My Parents, without their efforts, support and encouragement I would never succeed in my entire life.

My deepest gratitude for My Dear Husband for his help and Support all the time and special dedication to my beloved daughter Leen.

Thanks to my brother, my sister, my friends and all my family members for support and continuous encouragement.

Finally I would like to thank all patients who participated; I couldn't complete this work without them.

CONTENTS

Content	Page
Introduction and Rationale	1
Aim of the work	4
Review of literature	6
Chapter 1: Anatomy and Physiology of the Vestibular system:	
Peripheral Vestibular system 7	
Central Vestibular system 19	
Vestibular reflexes	
Chapter 2: Visual-Vestibular Mismatch:	
Anatomy of VVI	
Role of VVI 30	
Mechanism of VVI 30	
Theories of VVI	
Clinical picture of VVM 33	
Common causes of VVM 34	
Relation between VVM and motion sickness 35	
VVI and radiological imaging	
Clinical testing for diagnosis of VVM 36	

Chapter 3: Vestibular Rehabilitation and Balance Therapy (VRBT):

Introduction	
Vestibular Compensation 42	
Management of dizzy patient 49	
Vestibular Rehabilitation 49	
Management of VVM 58	
Outcome assessment for VRBT 60	
Materials and methods	62
Results	69
Discussion	86
	00
Conclusion	98
Recommendations	99
Summary	100
References	104
Arabic Summary	

LIST OF TABLES

No	Title	
1	Gender distribution over age in years among the study group	71
2	Distribution of patients according to associated dizziness complaints	71
3	Distribution of other complaints in VVM patients	72
4	Pure tone audiogram results among study group	73
5	Analysis of the modified VVM questionnaire	74
6	Distribution of positive answers for each question in modified VVM questionnaire	74
7	Patients' performance on office tests	75
8	Patients performance in different conditions of MCTSIB test	75
9	Means and Standard deviation for MCTSIB test results in seconds	76
10	VNG test results in VVM group	76
11	cVEMP test results in VVM patients	77
12	Patient performance during optokinetic training program	77
13	Patient answers in modified VVM questionnaire before and after rehabilitation	78
14	Degree of recovery for VVM symptoms according to modified VVM questionnaire after rehabilitation	78
15	Correlations for pre and post answers in modified VVM questionnaire	79

16	Performance of VVM patients in DVA test before and after rehabilitation	79
17	Comparison between abnormal MCTSIB test results(in seconds) pre and post rehabilitation	80
18	Comparison between MCTSIB test results	80
19	Performance of VVM patients in Functional Reach test before and after rehabilitation	81
20	Effect of age on patients' results in questionnaire, office tests and Vestibular test battery	81
21	Effect of duration of complaint on patients' results in questionnaire, office tests and Vestibular test battery	82
22	Vestibular test profile of VVM patients	82

LIST OF FIGURES

No.	Title	
1.	Bony Labyrinth	
2.	Spatial arrangement of semicircular canal	
3.	Three-dimensional orientation of semicircular canal planes and Extraocular muscles pulling directions in humans	
4.	Semicircular Duct	10
5.	Otoliths register linear acceleration and static tilt	12
6.	The Peripheral neural circuit of the otolith for enhancing sensitivity to linear acceleration and the related vestibulospinal neurons	
7.	Macula	14
8.	Orientation of the Maculae of the utricle and saccule	
9.	Otolith membrane	
10.	Planar Polarity and the organization of vestibular hair cells in the utricle and saccule	
11.	Cupula	
<i>12</i> .	Labyrinthine hair cells	
13.	3. Vestibular Nuclear complex	
14.	Excitatory projections from individual semicircular canals on the right side to the extra ocular muscles	24
<i>15</i> .	Optokinetic Neural pathway	29
<i>16</i> .	Visuo-Vestibular interactions. A proposed schema	31
<i>17</i> .	Exercises for enhancing gaze stability	52
18.	Exercises for enhancing eye movements	53

19.	Swaying back and forth	55
<i>20</i> .	Exercises for improving Vertigo	57
21.	Still images from DVD stimuli	59
22.	Functional reach test	66
23.	Number of VVM patients according to modified VVM questionnaire and Mallinson VVM questionnaire	70
24.	Distribution of patients' current illness among the study group	72

LIST OF ABBREVIATIONS

VVM	Visual –Vestibular Mismatch
VOR	Vestibulo-Ocular reflex
PB	Phonetically Balanced
VVI	Visual-Vestibular Interaction
VRBT	Vestibular Rehabilitation and Balance Therapy
SRT	Speech Reception Threshold
SD	Speech Discrimination
DVA	Dynamic Visual Acuity
MCTSIB	Modified Clinical Test for Sensory Interaction of Balance
FR	Functional Reach
VNG	Videonystagmography
c-VEMP	Cervical Vestibular Evoked Myogenic Potentials
SCM	Sternocleidomastoid Muscle
SCC	Semicircular Canal
SCD	Semicircular Duct
НС	Hair Cell
PCP	Planar Cell Polarity
LPR	Line of Polarity Reversal
<i>K</i> +	Potassium ion
<i>Ca++</i>	Calcium ion
SO	Superior Oblique
10	Inferior Oblique

IR	Inferior Rectus
LR	Lateral Rectus
SR	Superior Rectus
MR	Middle Rectus
AC	Anterior Canal
PC	Posterior Canal
LC	Lateral Canal
MLF	Medial Longitudinal Fasiculus
ATD	Ascending Tract of Dieter's
ВС	Brachium Conjunctivum
VN	Vestibular Nuclei
tVOR	Translational Vestibulo-Ocular Reflex
VSR	Vestibulo-Spinal Reflex
VCR	Vestibulo-Collic Reflex
OPK	Optokinetic
CNS	Central Nervous System
SP	Smooth Pursuit
AOT	Accessory Optic Tract
NAOT	Nuclei of Accessory Optic Tract
MS	Multiple Sclerosis
PET	Positron Emission Tomography
<i>fMRI</i>	Functional Magnetic Resonance Imaging
PIVC	Parieto-Insular Vestibular Cortex
SOT	Sensory Organization Test
CDP	Computerized Dynamic Posturography

HSN	Head Shake Nystagmus
CDVAT	Computerized Dynamic Visual Acuity Test
COR	Cervico-Ocular Reflex
PKC	Protein Kinase C
VRT	Vestibular Rehabilitation Therapy
DHI	Dizziness Handicapped Inventory
ABC	Activity Specific Confidence scale
DGI	Dynamic Gait Index
BBS	Berg Balance Scale
BPPV	Benign Paroxysmal Positional Vertigo

Introduction and Rationale

Introduction and Rationale

The term "visual vestibular mismatch" (VVM) was first used by Benson and King in 1979, the term was used to describe a "motion cue mismatch".

Present studies stated that VVM is a symptom set that arises as a result of pathology in the balance system, to the point where it can no longer act as the "template" against which other sensory information is compared, this results in an inappropriate reliance on environmental visual cues, even under circumstances in which they are orientationally inaccurate (*Mallinson*, 2011).

The complaints of VVM include both autonomic and vestibulospinal symptoms that can generate distress which could result in avoidance behavior for some things as shopping malls, 3D movies, passing traffic, trains, flowing water, windshield wipers, striped shirts because they give an illusion of instability or movement .Elucidation of these symptoms from a patient requires a comprehensive history to be taken in a non-leading manner (*Mallinson*, 2011).

Examination of dizzy patients include: office vestibular test battery and specific vestibular laboratory tests which are an important part of the clinical assessment and management of patients with dizziness and other balance disorders (*Katz and Barin*, 2009).

Stabilization of the retinal image during movement is necessary for optimal visual performance for an ambulatory human. Visual tracking (pursuit), proprioception, motor preprogramming ,prediction, and mental set (non -visual parametric adjustment) interact synergistically to optimize the gain of the vestibulo-ocular reflex (VOR) to stabilize the retina during head movements and are collectively termed visual vestibular interaction (VVI). Patients with a deficient vestibular system often compensate with other VVI mechanisms. These mechanisms are insufficient for optimal vision at higher rotational frequencies and velocities, and often give rise to symptoms of oscillopsia (*Clark*, *2001*).

Visual vestibular mismatch is difficult to diagnose because of a severe lack of adequate investigation tools, a limited ability to measure degree of injury in these patients, and because there is a wide interindividual variability between degree of injury and intensity of symptoms (*Mallinson*, 2011).

For intervention, exercises may be required that optimize the use of the visual system inputs for maintaining equilibrium and gaze stability. These may be incorporated with hand-eye coordination exercises when needed (*Shepard and Telian*, 1996a).

There are few researches conducted on visual-vestibular interaction disorder and the efficacy of vestibular rehabilitation therapy in these patients. This study will be conducted to evaluate the benefit Of VRBT in patients with VVM of peripheral vestibular lesion in origin.