

## Ain Shams University Faculty of Engineering Cairo-Egypt

Department of Electronics and Communication Engineering

# **Authentication Techniques in Mobile Communications**

by

#### Zakaria Zakaria Hassan Hassan

A Thesis
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

in Electrical Engineering

at

Faculty of Engineering - Ain Shams University

#### Supervised by

## Prof. Dr. Abdelhalim Zekry

Professor in the Electronics and Communications Engineering Department Faculty of Engineering - Ain shams University

## Prof. Dr. Talaat Abdellatief Elgarf

Professor in the Electrical and Computer Engineering Department Higher Technological Institute (HTI)



#### AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO-EGYPT

Department of Electronics and Electrical Communications Engineering

Name: Zakaria Zakaria Hassan Hassan Abdelwahab

Thesis title: "Authentication Techniques in Mobile Communications".

Degree: Master of Science in Electrical Engineering (Electronics and

Electrical Communications Engineering Department).

#### **EXAMINERS COMMITEE**

| Name                                                                                                                                           | Signature                              |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Prof.Dr. Salah Sayed Ibrahim Elagooz Electronics and Electrical Communications Eng.Dept. El Shorouk Academy                                    | ······································ |
| <b>Prof.Dr. Wagdy Refaat Anis</b> Electronics and Electrical Communications Eng.Dept. Faculty of Engineering – Ain Shams University            |                                        |
| <b>Prof.Dr. Abdelhalim AbdulNabi Zekry</b> Electronics and Electrical Communications Eng.Dept. Faculty of Engineering – Ain Shams University   |                                        |
| <b>Prof. Dr. Talaat Abdellatief Elgarf</b> Electrical and Computers Eng.Dept. Higher Technological Institute (HTI) 10 <sup>th</sup> Of Ramadan |                                        |

**Date:** / /

**STATEMENT** 

This dissertation is submitted to Ain Shams University for the

degree of Master of Science in Electrical Engineering (Electronics and

Communications Engineering).

The work included in this thesis was carried out by the author at the

Electronics and Communications Engineering Department, Faculty of

Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification

at any other University or institution.

Name: Zakaria Zakaria Hassan Hassan Abdelwahab

**Signature:** 

Date: 11/8/2014

## **CURRICULUM VITAE**

Name of Researcher : Zakaria Zakaria Hassan Hassan Abdelwahab

**Date of Birth** : 27/9/1987

**Place of Birth** : Cairo, Egypt

First University Degree: B.Sc. in Electrical Engineering

Name of University : Higher Technological Institute, 10<sup>th</sup> of Ramadan

**Date of Degree** : August 2009

#### **Abstract**

MILENAGE Algorithm applies the block cipher Rijnadael (AES) with 128 bit key and 128 bit block size. This algorithm is used in the 3GPP authentication and key generation functions (f1, f1\*, f2, f3, f4, f5 and f5\*) for mobile communication systems (GSM/UMTS/LTE). In this thesis a modification of Milenage algorithm is proposed through a dynamic change of S-box in AES depending on secret key. To get a new secret key for every authentication process we add the random number (RAND) transmitted from the authentication center (AuC) to the contents of the fixed stored secret key (K) and thus the initialization of the AES will be different each new authentication process. For every change in secret key a new S-box is derived from the standard one by permuting its rows and columns with the help of a new designed PN sequence generator. A complete simulation of modified Milenage and PN sequence generator is done using Microcontroller (PIC18F452). Security analysis is applied using Avalanche test to compare between the original and modified Milenage. Tests proved that the modified algorithm is more secure than the original one due to the dynamic behavior of S-box with every change of the secret key and immunity against linear and differential cryptanalysis using Avalanche tests. This makes the modified Milenage more suitable for the applications of authentication techniques especially for mobile communication systems.

**Keywords:** Authentication vector (AV), Modified MILENAGE Algorithm for AKA Functions (F1, F1\*, F2, F3, F4, F5, F5\*), AES, Dynamic S-BOX and PN Sequence Generator (LFSR).

## Acknowledgements

First of all, I am grateful to the Almighty **ALLAH** for establishing me to complete this thesis.

I would like to express my sincere gratitude to **Prof. Dr. Abdelhalim Zekry** for his guidance and professional advice. His constant encouragement, valuable comments and suggestions made this thesis successful. I thank him for advising me to publish my paper at the conference (CyberSec2014) that will be held at the Faculty of Engineering-Lebanese University.

I would like to thank and appreciate **Prof. Dr. Talaat Abdellatief Elgarf** for his support, guidance, advices, suggestions, and for his unlimited assistance and helpful comments during preparing this thesis.

I am deeply and forever indebted to my parents for their love, support and encouragement throughout my entire life. I am also very grateful to my brother Yehia Zakaria and my sister Nesreen Zakaria. I would like to acknowledge my best friend Mohammed Soliman for providing me his valuable insights on practical implementation.

# **Table of Contents**

| ABSTRACT                                                         | I   |
|------------------------------------------------------------------|-----|
| ACKNOWLEDGEMENTS                                                 | II  |
| TABLE OF CONTENTS                                                | III |
| LIST OF FIGURES                                                  | VI  |
| LIST OF TABLES                                                   | IX  |
| LIST OF ABBREVIATIONS                                            | X   |
| LIST OF SYMBOLS                                                  | XV  |
| LIST OF VARIABLES                                                | XVI |
| Chapter 1 Introduction                                           | 1   |
| 1.1 Authentication in Mobile Communication Systems               |     |
| 1.2 Thesis Objectives                                            |     |
| 1.3 Thesis Organization                                          | 2   |
| 1.4 publications                                                 | 2   |
| Chapter 2 Authentication Schemes in Mobile Communication Systems |     |
| •                                                                |     |
| 2.1 Introduction                                                 |     |
| 2.2 Security Architecture of the GSM/GPRS                        |     |
| 2.2.1 Subscriber identity (IMSI) confidentiality                 |     |
| 2.2.2 Subscriber identity authentication.                        |     |
| 2.2.3 User data confidentiality on physical connections          |     |
| 2.2.4 Connectionless user data confidentiality                   | ٥   |
| 2.2.5 Signaling information element confidentiality              |     |
| 2.3 Security Architecture of the UMTS/LTE/Advanced-LTE           |     |
| 2.3.1 Network access security (NAS)                              |     |
| 2.3.2 Network Domain Security (NDS)                              |     |
| 2.3.3 User domain security (UDS)                                 |     |
| 2.3.4 Application Domain Security (ADS)                          |     |
| 2.4 Security Enhancements                                        | 13  |
| 4.4 Seculity Emmanicuments                                       | 1 1 |
| 2.4.1 Security Enhancements in UMTS Standard                     |     |

| 2.4.2 Security Enhancements in LTE/Advanced LTE Standard                      | 15       |
|-------------------------------------------------------------------------------|----------|
| 2.5 Network Architecture in Mobile Communication                              |          |
| Systems                                                                       |          |
| 2.5.1 Common GSM/GPRS/UMTS Network Architecture                               | 16       |
| 2.5.1.1 GSM Network Architecture                                              | 16       |
| 2.5.1.2 GPRS Network Architecture                                             |          |
| 2.5.1.3 UMTS Network Architecture                                             |          |
| 2.5.2 LTE/SAE and Advanced LTE/SAE Network Architecture                       |          |
| 2.6 Authentication Schemes in Global System for                               | Mobile   |
| Communication (GSM) / General Packet Radio S                                  | Service  |
| (GPRS)                                                                        | 23       |
| 2.6.1 (GSM/ GPRS) Generation of Authentication (Triplet codes) by the HLR/AUC | vectors  |
| 2.6.2 GSM/ GPRS Computation of an Authentication                              | Vector   |
| (Authentication Triplet codes) in user Subscriber Module (SIM card)           | Identity |
| 2.7 Authentication Schemes in Universal Mobile                                | 20       |
| Telecommunications System (UMTS)                                              | 26       |
| 2.7.1 UMTS Generation of Authentication vectors (Quintets) by                 |          |
| the HLR/AuC                                                                   |          |
| 2.7.2 UMTS Authentication and key derivation in the Universal                 |          |
| Subscriber Identity Module (USIM)                                             |          |
| 2.8 Authentication Schemes in Long Term Evolution (LTE)                       |          |
| /Advanced LTE                                                                 |          |
| 2.8.1 Generation of EPS Authentication vectors by the                         |          |
| HSS/AuC                                                                       | 33       |
| 2.8.2 EPS Authentication and key derivation in the Universal                  |          |
| Subscriber Identity Module (USIM) and Mobile Equipment                        |          |
| (ME)                                                                          | 35       |
|                                                                               |          |
| Chapter 3 AES-128 and MILENAGE algorithms                                     | 38       |
|                                                                               |          |
| 3.1 Introduction                                                              |          |
| 3.2 Rijndael (AES-128) algorithm                                              | 38       |
| 3.3 Encryption operations in AES-128 Algorithm                                | 40       |
| 3.3.1 an initial Round Key addition                                           |          |
| 3.3.2 Byte Substitution transformation                                        | 41       |
| 3.3.3 Shift Rows transformation                                               | 43       |
| 3.3.4 Mix-Column transformation                                               | 43       |
| 3.3.5 Round Key Addition                                                      |          |
| 3.3.6 AES Key Expansion Algorithm (Schedule Key)                              |          |
| 3.3.7 A final round operation                                                 |          |
| 3.4 MILENAGE Algorithm                                                        |          |
| 3.4.1 Computation of the MILENAGE Algorithm                                   | 51       |

| 3.4.2 Computation of MILENAGE-3G/4G Algorithms                 |     |
|----------------------------------------------------------------|-----|
| 3.4.3 Computation of MILENAGE-2G Algorithms                    | 54  |
| <b>Chapter 4 Modifying Authentication Techniques in Mobile</b> |     |
| Communication Systems                                          | 56  |
| 4.1 Introduction                                               | 56  |
| 4.2 Proposed of MILENAGE Algorithm                             | 56  |
| 4.3 Upgrade of S-box (Dynamic change of S-box) using PN        |     |
| sequence generator                                             | 57  |
| Chapter 5 Simulation and Results                               | 61  |
| 5.1 Introduction                                               | 61  |
| 5.2 AES standard-128                                           | 61  |
| 5.3 Modified AES -128                                          | 62  |
| 5.4 Avalanche test in AES standard - 128                       |     |
| 5.5 Avalanche test in Modified AES-128                         | 67  |
| 5.6 Derivation of Authentication Vector (AV) in 3GPP           |     |
| MILENAGE Algorithm Standard                                    | 70  |
| 5.7 Derivation of a stronger Authentication Vector (AV) in     |     |
| Modified MILENAGE Algorithm                                    | 71  |
| Chapter 6 Conclusions and Future Work                          | 81  |
| 6.1 Conclusions                                                | 81  |
| <b>6.2 Future Work</b>                                         | 82  |
| APPENDIX A                                                     | 83  |
| APPENDIX B.                                                    | 87  |
| APPENDIX C                                                     |     |
| APPENDIX D.                                                    |     |
|                                                                |     |
| References.                                                    | 106 |

# **List of Figures**

| Figure 2.1: security architecture of both UMTS/LTE and Advanced-LTE           |
|-------------------------------------------------------------------------------|
| Figure 2.2: Evolving NAS in mobile communication systems11                    |
| Figure 2.3: Common GSM/GPRS/UMTS Network19                                    |
| Figure 2.4: EPC Architecture22                                                |
| Figure 2.5: E-UTRAN Architecture                                              |
| Figure 2.6: Authentication schemes in GSM /GPRS24                             |
| Figure 2.7: Generation of Authentication Vectors (Triplet codes) in the AuC25 |
| Figure 2.8: GSM/GPRS Authentication and key derivation in the SIM-Card        |
| Figure 2.9: Authentication Schemes in UMTS28                                  |
| Figure 2.10: Generation of UMTS Authentication Vectors in the AuC             |
| Figure 2.11: UMTS Authentication and key derivation in the USIM               |
| Figure 2.12: Authentication Schemes in LTE/Advanced LTE32                     |
| Figure 2.13: Computation of local master key $K_{ASME}$                       |
| Figure 2.14: Generation of EPS Authentication Vectors in the HSS34            |
| Figure 2.15: Successful EPS AKA authentication35                              |
| Figure 2.16: EPS Authentication and key derivation in the USIM and ME         |
| Figure 3.1: Overall structure of the AES-128 algorithm40                      |

| Figure 3.2: Structure of the Sub-Bytes                                                                        | 41  |
|---------------------------------------------------------------------------------------------------------------|-----|
| Figure 3.3: Example of the Sub-Bytes transformation                                                           | .42 |
| Figure 3.4: Structure of the Shift Rows                                                                       | .43 |
| Figure 3.5: Example of the Shift Rows s transformation                                                        | .43 |
| Figure 3.6: Structure of the Mix-column                                                                       | .44 |
| Figure 3.7 Example of the Mix- Columns transformation                                                         | .45 |
| Figure 3.8 Structure of the Add Round Key                                                                     | 45  |
| Figure 3.9 Example of the Add Round Key transformation                                                        | .45 |
| Figure 3.10: AES Key Expansion                                                                                | .46 |
| Figure 3.11: Rotated the last Row                                                                             | .47 |
| Figure 3.12: Sub-byte the Row by using S-box Look up Table                                                    | .47 |
| Figure 3.13: Look Up Table of the Rcon                                                                        | .48 |
| Figure 3.14: Operation XOR between first Row of Key and last Row after the Modification and First Row of Rcon | .48 |
| Figure 3.15: XOR-ing between Modified Row and Second Row of Master Key                                        | .48 |
| Figure 3.16: Example of AES-128 Key Expansion                                                                 | 48  |
| Figure 3.17: AES encryption round                                                                             | .49 |
| Figure 3.18: Computation of the MILENAGE Algorithm functions                                                  | .54 |
| Figure 4.1: Modification of MILENAGE Algorithm                                                                | .57 |
| Figure 4.2: PN random sequence generator                                                                      | .58 |
| Figure 5.1: Avalanche effects of AES standard due to change one bit in plaintext.                             | 65  |

| Figure 5.2 Avalanche effects of AES standard due to change one bit in Secret Key  | 66 |
|-----------------------------------------------------------------------------------|----|
| Figure 5.3: Avalanche effects of Modified AES due to change one bit in Plain-Text | 68 |
| Figure 5.4: Avalanche effects of Modified AES due to change one bit Secret Key    | 69 |

## **List of Tables**

| Table 3.1: AES S-Boxes                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 3.2: The values of RC[j] in hexadecimal47                                                                                                                     |
| Table 4.1: AES standard S-BOX58                                                                                                                                     |
| Table 4.2: For COLUMNs Dynamic S-box after arrangement = [09AE48DBC37F5612]59                                                                                       |
| Table 4.3: Final Dynamic S-box ROWs after arrangement = [B9DE60C327458F1A]60                                                                                        |
| Table 5.1: AES Standard - 12861                                                                                                                                     |
| Table 5.2: Modified AES (Dynamic S-box) - 12863                                                                                                                     |
| Table 5.3: Samples results of Cipher text and Avalanche test due to change one bit in plain text in standard AES-12864                                              |
| Table 5.4 Samples results of Cipher text and Avalanche test due to change one bit in secret key of AES -128 standard65                                              |
| Table 5.5: Samples results of Cipher text and Avalanche test due to change one bit in plain text of Modified AES-12867                                              |
| Table 5.6: Samples results of Cipher text and Avalanche test due to change one bit in Secret Key of Modified AES-12868                                              |
| Table 5.7 Result Outputs of Test Set in 3GPP Milenage Algorithm standard to derivation Authentication Vector70                                                      |
| Table 5.8: Result Outputs of Modified MILENAGE Algorithm to derive a stronger Authentication Vector (AV) than outputs of standard Milenage Algorithm (AV) in 3GPP72 |
| Table 6.1: Average value of avalanche tests for (plain text - secret key) in AES-128 and Modified AES-12881                                                         |

### **List of Abbreviations**

2G Second Generation

3G Third Generation

4G Fourth Generation

3GPP Third Generation Partnership Project

A3 GSM authentication function

A8 GSM key generation function

AES Advanced Encryption Standard

ADS Application Domain Security

AF Authentication Framework

AK Anonymity Key

AKA Authentication and Key Agreement

AMF Authentication and key Management Field

AN Access Network

ASME Access Security Management Entity

AuC Authentication Centre

AUTN Authentication Token

AV Authentication Vector

BSC Base Station Controller

BSS Base Station Subsystem

BTS Base Transceiver Station

CK Cipher (Confidentiality) Key in 3G/4G

CN Core Network

CS Circuit Switched

CCU Channel Codec Unit

DES Data Encryption Standard

EIR Equipment Identity Register

EPS Evolved Packet System

EPS-AV EPS authentication vector

ETSI European Telecommunications Institute

E-UTRAN Evolved Universal Terrestrial Radio Access Network

FIPS Federal Information Processing Standard

FFC Forward Error Correction

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HE Home Environment

HLR Home Location Register

HSS Home Subscriber Server

HON Handover Number

ICC Integrated Circuit Card

IP Internet Protocol