

Ain Shams University
Faculty of women
Chemistry Dept.

Preparation and characterization of some polyester nano composites to use in the manufacture of drinking water pipes

A Thesis
Submitted for
M.Sc. Degree of Science
In
Organic Chemistry
Present by

Shymaa Mahmoud Kamel Mahmoud

(B.Sc., Major Chemistry, 2007)

To

Chemistry Department

Faculty of Women's for Arts, Science and Education

Ain Shams University

Cairo

Egypt

Supervised by

Prof. Dr. Nadia Gharib Hassan Kandile

Prof. of organic chem.

Chem. Department Faculty of women

Ain shams university

Prof. Dr. Maha Moustafa El shafei


Prof. Dr. Amr Hassan Mohamed

Prof. of sanitary& Environmental Engineering Inst.

Housing &Building National Research Center

Prof. of sanitary & Environmental Engineering Inst.

Housing &Building National Research Center

Ain Shams University Faculty of women Chemistry Dept.

Preparation and characterization of some polyester Nano composites to use in the manufacture of drinking water pipes

By Shymaa Mahmoud Kamel

TI		
1 n	2129	advisors
- 11	COIO	auvisuis

Pror.Dr.Nadia Gharib Hassan Kandile

Prof.Dr. Maha Moustafa El-shafei

Prof.Dr. Amr Hassan Mohamed

Thesis approved

Martia Randelle.

Martin El Shofin

Amr Hasson Mahamed.

Head of Chemistry Department

Prof.Dr. Tahia Bioumy

takia B. Mostalier

QUALIFICATION

Name : Shymaa Mahmoud Kamel

Scientific Degree : B.Sc.

Department : Chemistry

Faculty :women 's for Arts, Science

and Education

University : Ain Shams University

B.Sc. Graduation year: 2007

ACKNOWLEDGEMENTS

All Thanks to ALLAH

I would like to express my greatly appreciates to **Prof. Dr. Nadia G.Kandile**, Prof. of organic chem., Chem. Department Faculty of Women 's for Arts, Science and Education, Ain shams University not only for suggesting the subject investigated but also for her continuous advice and encouragement provided during the course of this work.

The author is indebted to **Prof. Dr. Maha El-shafei** Prof. of Sanitary & Environmental Engineering Inst. Housing & Building National Research Center (HBNRC), for her valuable advices, guidance and continuous assistance in carrying out this research.

The author is indebted to **Prof. Dr. Amr Hassan Mohamed** Prof. of Sanitary & Environmental Engineering Inst. Housing & Building National Research Center, for his valuable advices, guidance and continuous assistance in carrying out this research.

The author also wishes to acknowledge the generous help extended by **Prof. Dr. Mahmoud Kamel Mahmoud**, Director of Electromechanical Inst, National Center for Housing &Building Research.

Thanks are also due to the staff of sanitary & Environmental Engineering Inst. of HBNRC and Row Materials Inst. of HBNRC, for their assistance during the experimental part of this thesis.

Thanks are also due to "Arab Company for Development of Materials" for supplying the constituent used in fabricating the composite material this research. Special thanks are due to **Eng. Alla El-Din Morsy** for assisting in the fabrication of the test specimen materials.

Thanks are also due to "Future Pipe Industries". Special thanks are due to **Eng. Ahmed Hassan** for assisting during the experimental part of this thesis.

DEDICATION

TO MY PARENTS

I have to thank Allah for choosing both of you to be my parents.

To My Dear HusbanD

Thank you for his continuous support and

helping me

To My Dear BroTher

To My Dear sisTer

Thank both of you for helping me

وَعَلَّمَكَ مَالَمْ تَكُنْ تَعْلَمُ وَكُنْ تَعْلَمُ وَكَانَ فَصْلُ اللهِ عَلَيْكَ عَظِيمًا

صَّنْ أَوَ اللهُ الْعُظَمِينَ،

سورة النساء آيه (١١٣)

CONTENTS

	page
ACKNOWLEDGEMENTS	i
DEDICATION	ii
LIST OF ABBREVIATION	iii
LIST OF SCHEME	iv
LIST OF FIGURES	V
LIST OF TABLES	Xi
SUMMARY	Xii
AIM OF STUDY	Xiv
1. INTRODUCTION	1
1.1 Historical Background	1
1.2 Why Use GRP Pipe?	4
1.2.1 Application of GRP Pipe	4
1.2.2 Uses for the GRP pipe system	5
1.3 Composite Materials	5
1.3.1 History of Composites	6
1.3.2 The Reason for Consumption of Composites	6
1.3.3 Basic Concepts of Composites	7
1.3.4 Reinforcement Bonding-Matrix Interface	8

1.3.4.1 Wettability	9
1.3.4.2 Interfacial Bonding	10
a. Mechanical bonding	10
b. Electrostatic bonding	10
c. Chemical bonding	11
d. Reaction or inter diffusion bonding	11
1.4 Polymeric Composite Materials	12
1.4.1 Polyester Resin Based Polymeric Composite	12
1.4.1.1 Type of Polyester Resin	13
1.4.1.2 Properties of Polyester Resin	15
a. Chemical Structures	15
b. Mechanical Properties	16
c. Thermal Properties	16
1.5 Nano Technology	17
1.6 Nano Composite Materials	18
1.6.1 Reasons for Interest for Nano Composite Technology	19
1.6.2 Polymer/ Clay Nano Composites	21
1.6.3 The Structure and Properties of the Resulting Nano Composites Structure	22
1.6.4 Preparation Methods of Polymer Layered Silicate (PLS) Nano Composites	23
1.6.4.1 In Situ Polymerization	24
1.6.4.2 Solution Process	25

1.6.4.3 Melt Compounding	26
1.6.5 Organically Modified of the Layered Silicates in a Polymer	26
1.6.5.1 Characterization of Dispersion an Organically Modified of the Layered silicates in a polymer	26
1.6.5.2Mechanism of Organically Modified of the Layered Silicates	27
1.7. Fillers	29
1.7.1 Clay Minerals	29
1.7.1.1 Physical Properties of Clays	29
1.7.2 Bentonite	30
1.7.3 Nano bentonite	32
1.7.4 Compatibilizing Agents	32
1.7.5 Surfactants	34
17.5.1 Surface active agents	34
1.7.5.2 Chemical composition of surface active agents	35
1.7.5.2.1 Hydrophobic groups	35
1.7.5.2.2. Hydrophilic groups	36
1.7.5.3 Classification of surface active agents	37
a .Natural surface active agents	37
b. Synthetic surface active agents	38
1.7.5.4 Reaction of halobenzoquinones	42
1.7.5.5The Behavior of Chloranil with Organic Amines	44