The Effect of Acrylic Resin Reinforcement on Stresses Induced on Implant Supported Mandibular Over Denture

A Thesis

Submitted to the Faculty of Dentistry

Ain- Shams University

In partial fulfillment of the requirement for the Master Degree in Oral and Maxillofacial

Prosthodontics

Presented by

Mabrouk Moftah Elhemaly

B.D.S (Sirte University- 2005)

Faculty of Dentistry
Ain- Shams University
2011

Supervisors

Prof. Dr. Ingy A. Talaat Lebshtien

Professor and Chairman of Prosthodontics

Department,

Faculty of Dentistry

Ain Shams University

Dr. Tamer Omar Ibrahim

Associate Professor of Prosthdontics Department,
Faculty of Dentistry
Ain Shams University

Dr. Mohamed Salah Abd El Aziz

Lecturer of Dental Materials,

Faculty of Dentistry,

Ain Shams University

تأثير الاكريل المقوى على الاجهاد الناتج على الانسجة المحيطة بالغرسات السنية الداعمة للاطقم الكاملة المحمولة

رسالة مقدمة الى قسم الاستعاضة الصناعية كلية طب الاسنان- جامعة عين شمس كجزء متمم للحصول على درجة الهاجيستير في الاستعاضة الصناعية للفم والوجه والفكين

مقدمة من الطبيب/ المبروك مفتاح الهمالى المبروك مفتاح الهمالى بكالوريوس طب وجراحة الفم والاسنان دفعة 2005 – جامعة سرت

كلية طب الاسنان جامعة عين شمس 2011

تحت إشراف

أ. د/ انجي أمين طلعت لبشتين أستاذ ورئيس قسم الاستعاضة الصناعية كلية طب الأسنان - جامعة عين شمس

ا.م.د/ تامر عمر ابراهيم أستاذ مساعد بقسم الاستعاضة الصناعية كلية طب الأسنان - جامعة عين شمس

د/محمد صلاح عبد العزيز مدرس بقسم المواد الحيوية كلية طب الأسنان - جامعة عين شمس

الملخص العربي

استهدفت هذه الدراسة تقييم تأثير الاكريل المقوى على الاجهاد الناتج على الانسجة المحيطة بالغرسات السنية الداعمة للاطقم الكاملة المحمولة.

تم عمل نموذج من مادة الاكريل وتم وضع غرستان سنيتان في منطقة النابين لهذا النموذج.

تم تصميم طقمين محمولين كاملين على هذا النموذج حيث كانت قاعدة الطقم المحمول الاول مصنوعة من الاكريل المقوى اما قاعدة الطقم الثاني مصنوعة من الاكريل الحراري.

استخدمت تكنولوجيا مقاييس الإجهاد لتسجيل الاجهاد الناتج عن اسقاط الاحمال باستخدام جهاز الحمل حيث تم وضعها حول الغرسات السنية وفي الحافة الدردريه جانبيا في مكان الضرس الأول.

ثم أنزل ضغط معياري مقداره 60 نيوتن في جهة واحده ثم في الجهتين في التصميمين المختلفين في منطقة الضاحك الثاني و الضرس الأول للفك السفلي.

قراءة وتحليل النتائج إحصائيا أوضحت الأتي:

- الإجهادات على الغرسات السنية كانت أكثر من الإجهادات المنقولة على
 الحافة الدردريه في قاعدتي الاطقم المستخدمة.
 - الإجهادات فوق الغرسات السنية على الاطقم المصنوعة من الاكريل الحرارى كانت أقل من الاجهادات فوق الغرسات السنية على الطقم المصنوعة من الاكريل المقوى.
- إسقاط القوى على جهة واحده من الفك له تأثير سلبي على الإجهادات المنقولة إلى كل من الغرستين والحافه الدر دريه الجانبية مقارنة بإسقاط القوى على جانبي الفك.

Acknowledgement

Before reviewing the contents of my thesis, I would like to express my thanks and gratitude to **ALLAH** and then to all those who helped me to achieve my work.

At first, I would like to thank **Prof. DR.** *Ingy Talaat Lebshtien*, Professor & Chairman of Prosthodontic Department ,Faculty of Dentistry, Ain Shams University, for being always supportive and understanding, and for being always present whenever needed.

I am also deeply grateful to *Dr. Tamer omar Ibrahim*, Associate Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University, for his guidance and advice throughout this research.

I am extremely grateful to *Dr. Mohamed Salah Abd ELaziz*, Lecturer of Dental Materials Department, Faculty of Dentistry, Ain Shams University for his technical and clinical support, and unlimited generosity. This work could have never been completed without his unlimited care and guidance.

Special thanks for Prof. **DR.** *Mohamed Salah El-Din Ayoub*, Professor of Oral Pathology, and Vice Dean of Ain Shams University, for his great help and also giving me generously of his time.

Finally, I would like to express my deep appreciation to all staff member of Prosthodontic Department, Faculty of Dentistry, Ain Shams University.

Table of Contents

Introduction	1
Review of literature	4
Dental Implant	4
Implant Overdenture	7
Classification of Implant Overdenture	10
Denture Base Material	15
Types Of Acrylic Resin Polymer	18
Conventional Heat-cured PMMA	18
Chemically Activated denture Base Resins	19
Pour Type Denture Resins	20
Rapid Heat Polymerized Resins	21
High Impact strength Resin	21
Light Activated Denture Base resin	22
Microwave Denture Base	23

Introduction

Reinforcement of Acrylic Resin dentures	23
Chemical Modification	24
Metal Reinforcement	24
Fiber Reinforcement	25
Types of Reinforcing Fibers	25
Class Fibers Reinforcement	26
Efficiency of Fiber Reinforcement	28
Methods of Stress Analysis	34
Photoelastic Coating	35
Principle of Strain Gauge	39
Wheatstone Bridge	40
Wheatstone Bridge Aim of the study	40 41
Aim of the study	41
Aim of the study Materials and methods	41 42
Aim of the study Materials and methods Results	41 42 58
Aim of the study Materials and methods Results Discussion	41 42 58 73
Aim of the study Materials and methods Results Discussion Discussion of Material and Methods	41 42 58 73 73
Aim of the study Materials and methods Results Discussion Discussion of Material and Methods Discussion of the results	41 42 58 73 73 78

List of Figures

Fig 1: Wheatstone bridge	40
Fig 2: Intra oral view of the lower arch	43
Fig 3: Impression of the lower ridge	43
Fig 4: Cast in wax	44
Fig 5: The duplicated acrylic cast	44
Fig 6: Implant installed in the canine region	45
Fig 7: The duplicated stone cast	47
Fig 8: Wax coping in the duplicated stone cast	47
Fig 9: Cast copings on the model	47
Fig 10 : The finished overdenture	49
fig 11: Space created for the copings	49
Fig 12: The cast copings secured to the acrylic overdenture	49
Fig 13: The silanated glass fibers	51

Introduction

Fig 14: Stone index of the ridge	52
Fig 15: Light body rubber base simulating the mucosa	53
Fig 16: The strain gauge (A & B)	53
Fig17: Strain gauge positioned at the buccal aspect of the implant and the ridge	55
Fig 18: Load Application to the acrylic model	56
Fig 19: Diagram showing Wheatstone electronic bridge circuit	57
Fig 20: Mean values of the amount of microstrain induced on the implant and ridge for heat cured acrylic implant supported overdenture base during loading.	60
Fig 21: Mean values of the amount of microstrain induced on the implant and ridge for fiber reinforced heat cured acrylic implant supported overdenture base during loading.	62
Fig 22: Mean values of microstrain induced at the right and left implants and ridges for heat cured acrylic denture base during loading.	65
Fig 23: Mean amount of microstrain induced at the right and left implants and ridges for the fiber reinforced heat cured acrylic implant supported overdenture base during loading.	67
Fig 24: Mean, amount of microstrain induced on the implant and ridge for the heat cured and fiber reinforced heat cured acrylic implant supported overdenture base during unilateral loading.	70
Fig 25: Mean, amount of microstrain induced on the implant and ridge for the heat cured and fiber reinforced heat cured acrylic	72

implant supported overdenture base during bilateral loading.

List of Tables

	Page
Table 1: Mean, standard deviation and Paired-t test for the amount of microstrain induced on the implant and ridge for heat cured acrylic implant supported overdenture base during loading.	60
Table 2: Mean, standard deviation and Paired-t test for the amount of microstrain induced on the implant and ridge for fiber reinforced heat cured acrylic implant supported overdenture base during loading.	62
Table 3: Mean values of microstrain induced at the right and left implants and ridges for heat cured acrylic denture base during loading.	64
Table 4: Mean, standard deviation and paired – T test for the amount of microstrain induced at the right and left implants and ridges for the fiber reinforced heat cured acrylic implant supported overdenture base.	67
Table 5: Mean, standard deviation and student-t test for the amount of microstrain induced on the implant and	69

ridge for the heat cured and fiber reinforced heat cured acrylic overdenture base during unilateral loading.	
Table 6: Mean, standard deviation and student-t test for the amount of microstrain induced on the implant and ridge for the heat cured and fiber reinforced denture base during bilateral loading.	72

Introduction

Edentulism has a negative impact not only on mastication, but also on speech, esthetics and self-image. The loss of teeth is usually accompanied by resorption of the surrounding alveolar bone which compromises the expected results of conventional prosthetic therapy. Besides that complete dentures are always difficult to accept requiring a considerable level of tolerance and adaptation by the patient.

The reduced stability, retention and the maladaptive response to complete dentures inspired prosthodontists to seek an alternative for conventional complete dentures. Once established that osseointegration is a predictable successful treatment, it was a natural progression to use osseointegrated implants to provide proper support and retention to complete dentures.

Implant-supported prosthesis has become a popular treatment for edentulous patients who are maladaptive to complete dentures. Recent studies have demonstrated a higher tendency for

success when overdentures were supported by implants than by natural roots⁽¹⁾.

The overdenture helps patients develop better skills by wearing a stable denture rather than starting denture skills with an unstable complete denture. However, overdentures are contraindicated in cases exhibiting insufficient inter-arch distance, patients with systemic complications and patients with bad oral hygiene.

Acrylic resin is the most common material used as denture base. It has a lot of desirable properties although it is still far from ideal in fulfilling all the mechanical requirements of a prosthesis.

Acrylic polymers were introduced as denture base materials in 1937. Previously materials such as vulcanite, nitrocellulose phenol formaldehyde, vinyl plastics and porcelain were used for denture bases. The main advantages of heat cured acrylic resin include their ease of processing, low cost and light weight. Moreover, the material has the ability to simulate the translucence of the oral tissues and retains its appearance over along period of time ⁽²⁾.

Denture base fracture is one the most disadvantages of denture base polymer material. The incidence of denture base fracture is most commonly encountered in overdentures due to the high masticatory load, thin thickness of the denture base over the abutments and bone resorption causing the abutment to act as a fulcrum causing denture base fracture. Several approaches were attempted to strengthen the acrylic base using different methods and materials. The aim was to improve the impact strength, fatigue resistance and transverse strength of the acrylic resin⁽³⁾.

Modification of the conventional heat cured denture base to produce a co-polymerized high impact strength resin, or reinforcing the denture base with carbon fibers, glass fibers, ultrahigh molecular and metal powders have been suggested.

In-vitro stress analysis studies have been widely used to provide good understanding of the nature of stresses and strains acting on dental structures, even more than in-vivo studies. This can be explained by the fact that any valid in-vivo test has to be repeated under the same conditions every time standardizing all the variables except the one under investigation which is clinically impossible. Thus, comparative studies would be more accurate and practical if they were laboratory performed.

Many experimental stress analysis methods have been employed to evaluate biomechanical loads. These techniques comprise photo-elastic stress analysis, strain gauge analysis, holographic interferrometry and finite element stress analysis.

Long term researches have been published evaluating the generalized effect of overdenture attachment on the lower denture and abutment supporting structures. However, little attention was directed to the effect of denture base material on the overdenture supporting structures.