

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

BZEVO

A PHYSICAL STUDY 0F WIND EFFECT ON THERMAL AND AERODYNAMIC BEHAVIOR ON DIFFERENT BUILDING MODELS

THESIS

Submitted for the degree of Ph. D.

IN

PHYSICS

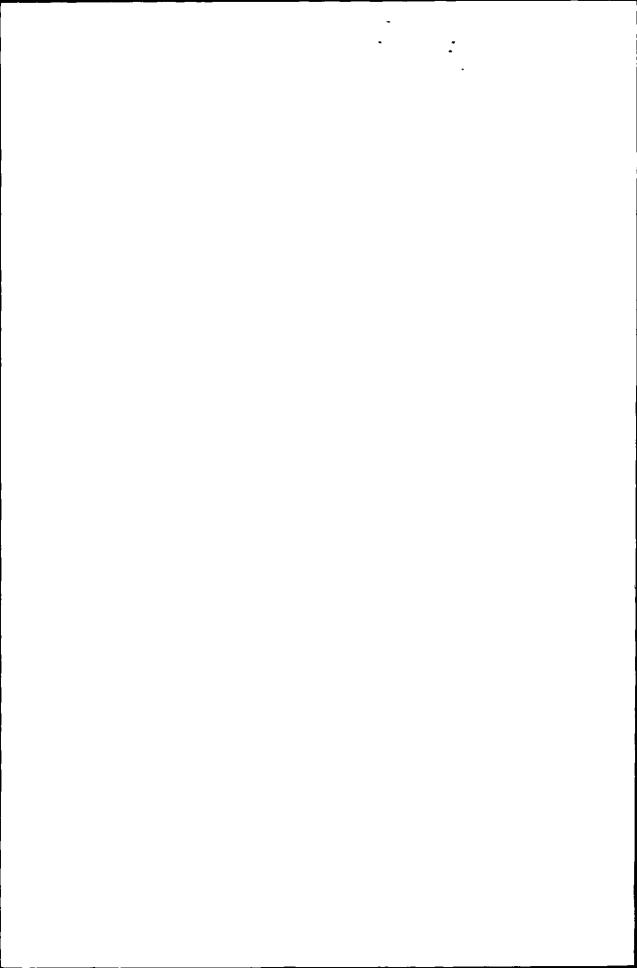
TO

Physics Department

Faculty of Science

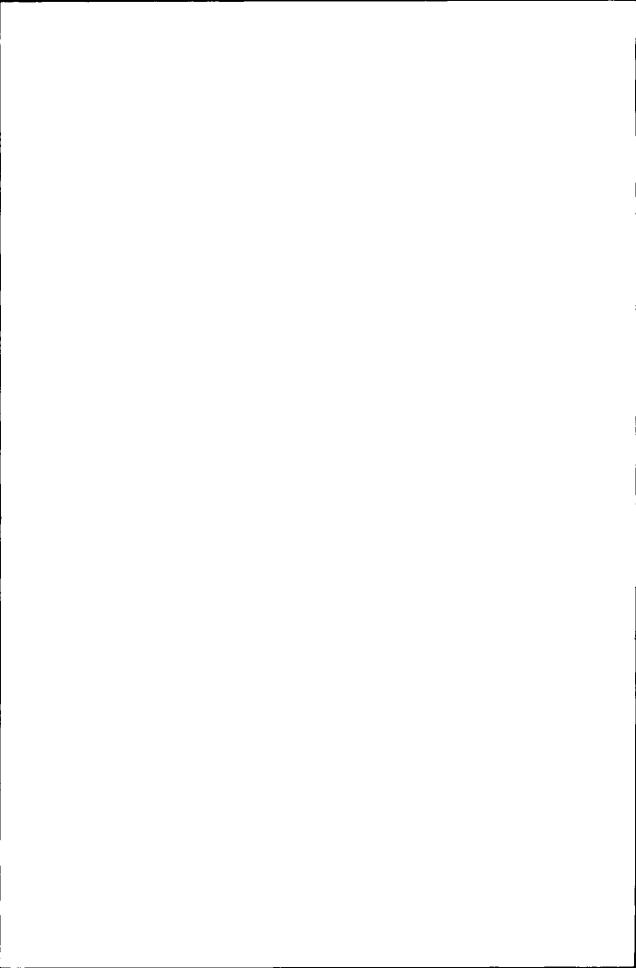
Ain Shams University

 \mathbf{BY}


NABIL MILAD GUIRGUIS

(M. Sc.)

Associate Researcher
BUILDING RESEARCH CENTER


1999

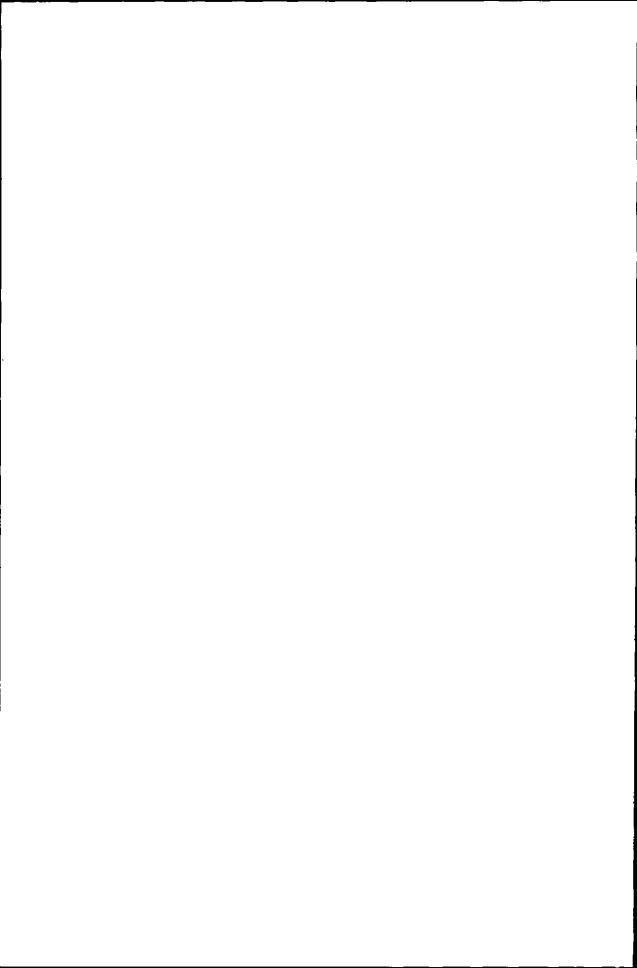
TER

DEDICATED TO:

THE SOUL OF MY FATHER MY MOTHER MY WIFE

SUPERVISORS

Prof. Dr. Sc. Mohamed Fathy Kotkata


Professor of Solid State physics

Physics Department, Faculty of Science

Ain Shams University

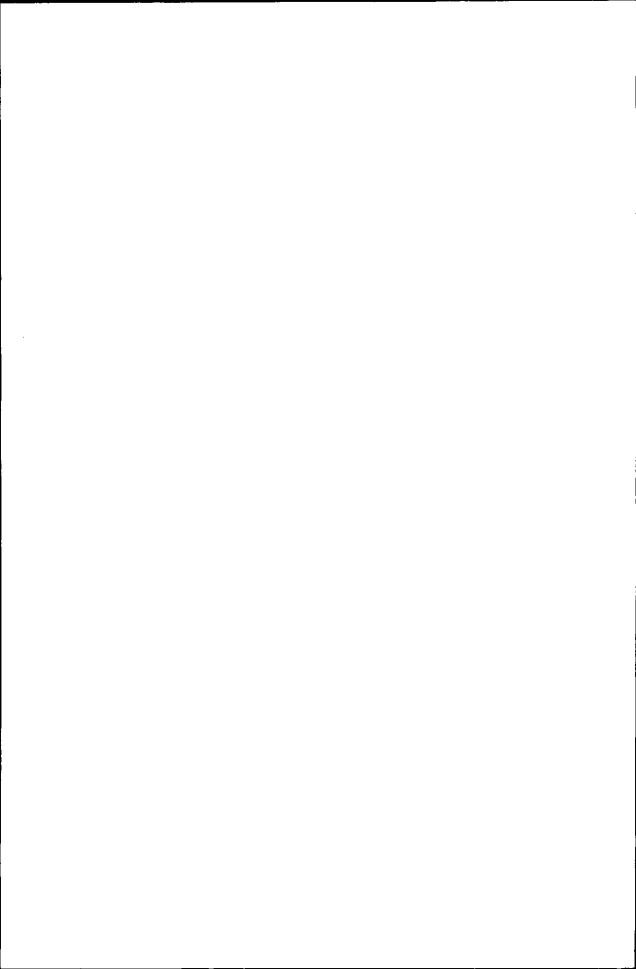
Prof. Dr. George Bassili Hanna

Professor of Building Physics and Environment Building Physics Department Building Research Center

ACKNOWLEDGEMENT

I wish to express my deep gratitude to Prof. Dr. Sc. Mohamed Fathy Kotkata, Physics Department, Faculty of Science, Ain Shams University whose supervision, continuous encouragement, constructive criticism, and sincere advice throughout were key factors in bringing this work to a successful conclusion.

I wish to express my deep thanks to Prof. Dr. George B. Hanna, Head of the Building Physics Departement, Housing & Building Research Center (HBRC), without whose supervision, continuous encouragement, constructive criticism, great assistance with the provision of funding for the test rig and the ANSYS pakage and sincere advice throughout this work would not have been concluded.


I would also like to express my deep gratitude to Prof. Dr. Mohammad R. Shaalan, Faculty of Engineering, Zagazig University, for his invaluable advice with regard to design, construction and testing of the experimental setup. Also, his help with the presentation and analysis of data is greatly acknowledged.

I am greatly indebted to both the Head of Physics Department, Faculty of Science, Ain Shams University and the Chair of HBRC for their encouragement.

I would also like to thank Eng. Mahmoud Ali Hassan, Associate Researcher, Dept. of Building Physics (HBRC); for his assistance with the construction of the test rig and its peripheral devices.

Thanks are also to all researchers and technical staff at the Building Physics Department, HBRC.

Last, but not least, I would like to extend deep thanks to my mother and my wife for their patience and constant encouragement throughout.

CONTENTS

		page
LIST OF FIGU	RE CAPTIONS	iii
LIST OF TABLE CAPTIONS		viii
NOMENCLATI	URE	ix
ABSTRACT		xii
GENERAL INT	RODUCTION	1
CHAPTER 1: L	ITERATURE REVIEW	4
	S WORK ON IN-DOOR SIMULATION ATIC CONDITIONS	4
	S WORK ON EXPERIMENTAL	9
INVESTIC	GATION OF WIND EFFECTS	
1,3 PREVIOU INVESTIG	S WORK ON THEORETICAL GATION	18
CHAPTER 2: T	EST RIG AND MEASURING TECHNIQUES	21
INTRODU	JCTION	21
	SIMULATION OF CLIMATIC	23
CONDITIO		
	JCTIONAL DETAILS OF WIND	23
TUNNEL		
2.3 TEST MOI	-	26
2.4 INSTRUM		29
	UNNEL FACILITY	34
2.6 TESTS AN	ND TECHNIQUES	36
CHAPTER 3: EXPERIMENTAL FINDINGS		42
INTRODU	JCTION	42
3.1 AERODY	NAMIC BEHAVIOR	42
	SUALIZATION	62
3.3 THERMA	L BEHAVIOR	71
CHAPTER 4:TI	HEORETICAL INVESTIGATION	91
INTRODU	JCTION	91
4.1 NATURE		91
	OF THE PROBLEM	92
4.3 GOVERNI CONDITIO	ING EQUATIONS AND BOUNDARY ONS	93
	CAL SOLUTION	96
4.5 COMPUTE	ER PROGRAM	97

	page
CHAPTER 5: THEORETICAL RESULTS	105
5.1 SINGLE LOW-RISE BUILDING MODEL	105
5.2 SINGLE MEDIUM-RISE BUILDING MODEL	108
5.3 TWO IDENTICAL BUILDING MODELS	112
5.4 TWO NON-IDENTICAL BUILDING MODELS	116
5.5 FOUR IDENTICAL BUILDING MODELS	119
CHAPTER 6: DISCUSSION AND CONCLUSION	121
6.1 RESULTS IN COMPARISONS	121
6.2 CONCLUSION	132
6.3 SUGGESTION FOR FURTHER WORK	134
REFFERENCES	136
APPENDICES	
APPENDIX (A): COMPONENTS OF THE MOMENTUM EQUATIONS	140
APPENDIX (B): TURBULENCE MODELING AND EDDY-	141
VISCOSITY APPROACH.	
APPENDIX (C): CALCULATION OF CONVECTIVE HEAT TRANSFER COEFFICIENT FROM	145
EXPERIMENTAL DATA	
APPENDIX (D): FLOW CHART OF THE COMPUTER	148
PROGRAM FOR THE CALCULATION	
OF CONVECTIVE HEAT TRANSFER	
COEFFICIENT FROM EXPERIMENTAL DATA	
APPENDIX (E): LISTING OF COMPUTER PROGRAM	149
FOR THE CALCULATION OF	142
CONVECTIVE HEAT TRANSFER	
COEFFICIENT FROM EXPERIMENTAL	
DATA	
APPENDIX (F): SAMPLES OF INPUT AND OUTPUT OF	150
COMPUTER PROGRAME FOR	
CALCULATING THE HEAT TRANSFER	
COEFFICIENT	

TITLES AND ABSTRACTS OF ARTICLES EXTRACTED AND PUBLISHED FROM THE PRESENT THESIS ARABIC SUMMARY