

BEHAVIOUR OF CONNECTION BETWEEN PRECAST HIGH STRENGTH CONCRETE BEAMS AND DECK SLABS

By **Eng. Karim Atef Hassan Sayed**

B.Sc. (۲۰۰٦)
Structural Division – Civil Engineering Departement
Faculty of Engineering – Ain Shams University

A Thesis
Submitted in Partial Fulfillment of the Requirements
of the Degree of Master of Science in Civil Engineering (Structural)

Under the supervision of:

Prof. Dr. Amr Ali Abdelrahman

Professor of Concrete Structures Structural Engineering Dept. Ain Shams University, Egypt.

Dr. Khaled Mohammed Hilal

Assistant Professor Structural Engineering Department, Ain Shams University, Egypt.

> November - ۲۰۱۳ Cairo - Egypt

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering (Structural).

The work included was carried out by the author at reinforced concrete laboratory of the faculty of engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date : $\gamma 1/(\xi/\gamma)$

Name : Karim Atef Hassan Sayed

Signature : Karim Atef

AUTHOR

Name : Karim Atef Hassan Sayed

Date of birth : Y9 May 19AT

Place of birth : Cairo, Egypt.

Academic Degree : B.Sc. in Structural Engineering

University : Ain Shams University

Date : July ۲۰۰٦

Grade : Good

Current job : Civil / Structural Engineer at PARSONS.

EXAMINERS COMMITEE

Name and Affiliation

Signature

Prof. Dr. Amr Ali Abdelrahman

Professor of Concrete Structures Structural Engineering Dept. Ain Shams University, Egypt.

Prof. Dr. Ibrahim Galal Shaban

Professor of Concrete Structures Executive Projects Manager High Education Authority, Egypt.

Dr. Ahmad Hassan Galab

Professor of Concrete Structures Structural Engineering Department, Ain Shams University, Egypt.

Dr. Khaled Mohammed Hilal

Assistant Professor Structural Engineering Department, Ain Shams University, Egypt.

ACKNOWLEDGEMENT

First of all, I thank ALLAH who guided and helped me to finish this work in the proper shape.

I would like to thank my father, mother, my wife and my whole family for their continuous support. I would like to express my deep appreciation to Prof. Dr. Amr Ali Abd El-Rahman, professor of concrete structures, faculty of engineering, Ain Shams University, for his experienced advice, continuous support and deep encouragement through all phases of the work.

I am also extremely grateful to Dr. Khaled Mohammed Hilal, Assistant Professor at the Structural Engineering Department, Faculty of Engineering, Ain Shams University, for his experienced advice, continuous support and deep encouragement through all phases of the work.

I would like to thank the technicians of the reinforced concrete laboratory, Ain Shams University.

Finally, I would like to thank my dear friends and colleagues Medhat Tawfik and Moataz Mostafa, who helped and supported me in the completion of this work.

Ain Shams University, Faculty of Engineering Structural Department

ABSTRACT

Title of the thesis:

"BEHAVIOUR OF CONNECTIONS BETWEEN PRECAST HIGH STRENGTH CONCRETE BEAMS AND DECK SLABS"

Submitted by: Eng. Karim Atef Hassan Sayed

Supervised by: Prof. Dr. Amr Ali Abdelrahman Dr. Khaled Mohammed Hilal

Over the past three decades, bridge deck construction using precast components has become the system of choice for contractors and transportation officials. The choice for precast concrete is due to the rapid erection of its lightweight components, reduction in overall mobilization and equipment costs and its structural durability. Several precast elements are available to meet with all construction requirements. It is often preferable to transport beams and deck slabs separately to reduce the weight of each element. While precast panels perform well under large and highly repetitive loading, the transversal grouted connection between precast beams and deck slabs can become problematic.

The research program included in thesis, evaluate the structural performance of the different types of the connection between precast high strength concrete beams and deck slabs. The main variable in the study was the shear connectors' distribution along the transversal connection between the beams and deck slabs. The research also evaluates the chemical adhesion between the beams and deck slabs using epoxy resins and grout to connect the beams with the deck slabs without using shear connectors.

Six high strength concrete beam specimens with different shear connector's distribution were tested under static loading conditions, flexural tests were performed to study the parameters mentioned previously and to quantify peak and post-peak behavior of the interface between beams and deck slabs. The different series of tests investigated the surface treatment of the bottom of the slab, the distribution and amount of shear connector and several pocket details. In addition, the effect of chemical adhesion on the behavior of the connection was investigated by using epoxy resin without shear connectors at one of the six beam specimens.

The thesis also presents the analytical program that evaluates the different design approaches of the international standards like ACI-TYAM Y.A, BSAYY, ECP-Y.T Y.Y and AASHTO LRFD Y.Y and comparing these approaches with the test results.

The research findings indicated that the studied shear connectors' distribution patterns; i.e. concentrated at beam edge or distributed along the beam length; had no significant effect on the load – deflection behavior or the ultimate capacity of the tested beam specimens. The beam specimens interface shear reinforcement was designed by the shear friction equation of the Egyptian code.

The research also indicated that Specimens with Dense shear connectors distribution achieved the full capacity as the monolithic control beam specimen, Specimens with light shear connectors distribution achieved 1.% of the full capacity of the monolithic control beam specimen. While The failure load of beam specimen without using mechanical connectors was $^{\text{Ao}}$ % of the monolithic control beam capacity.

Finally, the research indicated that, the grouted pockets technique is a promising alternative to the conventional cast-in-place concrete deck. They afford reduced construction time and fewer burdens on the motoring public. In addition, using high strength concrete has given smaller composite sections with the ability to carry larger loads.

Beam specimen B[¬] give promising results for using epoxy resin only at the interfacial surface without using mechanical shear connectors. More

researches are needed to evaluate this type of connection depending on epoxy only under cyclic loading. In addition, more researches are needed to evaluate and enhance the grouted pockets technique under cyclic loading.

TABLE OF CONTENTS

Table of contents	,
Notations	۲
Chapter (1) Introduction	0
1.1 General	,
1. Research Objective	Ĺ
N. Research Scope And Contents	1
Chapter () Literature Review	,
Y.1 general	١
Y.Y Precast Concrete Bridge Deck Panel System Background	١
Y. W Horizontal Shear Stress in Composite Members	ľ
Y.T.\ Classical Elastic Method	
Y. Y. Y Simplified Elastic Beam Behavior	,
Y.T.T Summary Of Shear Demand Methods	l
Y. Shear Friction Model	1
Y.º Horizontal Shear Strength Research For Cast-In-Place Decks YA	•
Y.o.\ Hanson	l
Y.o.Y MastY9	ł
Y.o.r Saemann and Washa	١
۲.º.٤ Birkeland	í
Y.o.o Shaikh	ĺ
Y.o.7 Loov	u
Y.∘. ∀ Walraven	
Y.o.A Mattock	
Y.o.9 Mau and Hsu	٤
Y.o.Y. Loov and Patnaik	٤
Y. Horizontal Shear Strength Research For Precast Deck Systems	>
Y.7.\ Menkulasi	>
Y.7.Y Scholz	į
Y. W Headed Stud Connectors for Composite Action	Ļ

₹. AASHTO Standard Specification Provisions	۳۸
Y. AASHTO LRFD-Y·· V Bridge Design Specifications for Horizo	
Y.4.1 Cohesion and friction factors for AASHTO LRFD Y	
Y.A.Y Maria Lang, Y. 11	٤ ٤
Y.1. ECP Y. TY. V Design Provisions	£ £
Y. 11 British standard – BS A111:1994	٤٥
Y. V.\ Horizontal Shear Force Due To Design Ultimate Loads	٤٥
Y. V. Y Average Horizontal Design Shear Stress	٤٦
Y. V. T Links In Excess Of Minimum	٤٦
Y. NY Effectiveness of Chemical Adhesion And Cohesion On The Shear Transfer	
Y. Y. Yanaka and Nakamura, Y. Y.	٤٧
Y.\Y.Y A.elmahdy, Y.\.	٤٧
Y. Y. T. Jonathan D. Kovach, Y. A.	٤٩
*. \ * horizontal shear connection	٥٠
7.14 Summary Of Horizontal Shear Strength Researches For Cas Decks	
Y. 10. Material Review – High Strength Concrete HSC	۰۱
Y.10.1. Definition	۰۱
Y. \o. Y. Characteristics of High-Strength Concrete	۰۲
Chapter (") Experimental Program	or
T.\ General	۰۳
♥.♥ Specimen Design Concept And Methodology	٥٤
T.T Horizontal Shear Connection	٥٤
T.T.\ Fully Composite Connection (Rigid Connection)	٥٤
T.T. Partially Composite Connection (Semi Rigid Connection)	
T. Lesign Of Test Specimens	
T.1. Flexure Capacity	00
T.£. Vertical Shear Capacity	٥٦
T. L. Horizontal Shear Strength For Fully And Partially Specimens B. B. B. And B.	Composite

۳.٤.۳.۱ Beam specimen B۲	٧٥
۳.٤.۳.۲ Beam specimen B ^۳	o
٣.٤.٣.٣ Beam specimen B ^ξ	oV
٣.٤.٣.٤ Beam specimen B°	۰۰۰۰۰۰
Test Specimen	ەم
T. Fabrication Of Test Specimen	ە۲
7.1.1 Fabrication Of Control Specimen And Five R-Section Concrete (Stage 1)	
T.J. Fabrication Of Slab Panels With Different Pockets Patterns (Stag	e 1)79
T.J. Application Of The Grout And The Epoxy Resin (Stage 7)	٠٠٠ ٧١
T.T.A Application Of The Grout	٠٠٠ ٧١
T.T.B Application Of The Epoxy Resin	٧٣
♥. V Material Properties	V £
T.V.1 Concrete	V £
T.V. Reinforcing Steel	٧٦
T.V.T Grouting Mortar (SIKAGROUT-T) :)	٧٧
T.V. £ Epoxy resin (SIKADURE-PF)	٧٧
T. Instrumentation	۷۸
T.A.\ Load Measurements	۷۸
T.A. Vertical Deflection And Horizontal Slip Measurements	V 9
T.A.T Steel Strain Measurements	۸۰
۳.۸.٤ Concrete Strain Measurements	۸۳
T.4 Test Set-Up	۸۳
T.A. \ Loading	٨٤
T.4.7 Supports	۰ ۸٥
T.A. Preparation Of Test	۰۰۰۰۰ ۸۵
T.9.4 Testing Procedure	۸٦
Chapter () Results of the experimental program	AV
4.\ General	۸۷
₹.₹ Test Results	۸۸
£.Y.\ Specimen B\ (Control Specimen):	۹۲
£ Y.Y Specimen BY:	٩٧

٤.٢.٣ Specimen B٣:	٠ ٢
٤.٢.٤ Specimen B [£] :	٠٨
£.Y.o Specimen Bo:	۱۳
4.7.7 Specimen B7:	۲.
£.Y.V Horizontal Slip	۲ ٤
Chapter (2) Discussion Of The Experimental Results	71
•. \ General	۲۸
•. T Discussion Of The Experimental Results	۲۸
•. Y.\ Effect Of The Different Shear Connectors' Distribution	۲۸
•.Y.Y Effect Of The Chemical Adhesion By Using Epoxy Resin	٣٧
•. ** Conclusion Of The Experimental Work	٤.
Chapter (7) Analytical Study	٤)
7.1 General	٤١
7.7 Different Design Provisions For Horizontal Shear strength	٤١
7.7.1 ACI - TIA Design Provisions	٤٢
T.Y.I.I MAST	٤٢
7.7.1.7 Birkeland's Equation	٤٣
٦.٢.١.٣ Shaikh's Equation	٤٤
٦.٢.١.٤ Loov's Equation	و ع
7.7.1.0 Walraven 's Equation	٤٦
7.Y.Y ECP Y. TY. V Design Provisions	٤٧
T.T. AASHTO LRFD Design Specifications - T.V.	٤٨
7.7.4 British standard – BS Alli-1:199V	٤٩
7.Y.o Mattock and Hawkins (1947)	٥,
7.7.7 Patnaik (7 · · ·)	٥١
7. Parametric Study For The Available Analytical Models	٥٢
5.4 Experimental Longitudinal Shear Stress (experimental shear stress) 19	٤ ٥
7.º Comparison Between Experimental And Analytical Results	٥٥
7.7. Comparison Between Different Analytical Models Based C Experimental Data	
7. Summary Of The Analytical Models And Experimental Results	٧.

Table of contents

٦.٨. Experimental Results Compared To The Existing Analytical Models	۱۷۱
٦.٨.١ Linear Equations	1 7 1
٦.٨.۲ Non- Linear Equations	۱۷۳
٦.٨.٣ Loove And Walraven Equations	۱۷٥
7.9. Cohesion Effectiveness On The Horizontal Shear – Beam Specimen	
T.4.1 Tanaka And Nakamura	۱۷۸
T.4. Y AASHTO LRFD Y V	۱۷۸
٦.٩.٣ Mattock and Hawkins	۱۷۸
7.4. <i>Patnaik</i> (7 · · ·)	1 V 9
T.4. Test Result Compared To The Existing Analytical Models	1 V 9
T.V. Strut And Tie Models	۱۸۱
7.1.1 Strut And Tie Model For The Grouted Pockets Specimens	۱۸۱
T.1 Strut And Tie Model For Beam Specimen B7	۱۸۲
7.11. Summary And Conclusion For The Analytical Work	۱۸٦
Chapter () Summary, Conclusions And Recommendations	114
V.\ Summary	۱۸۷
Y. Y Conclusions	۱۸۸
Future Work	١٩.
references	191
Appendix A / Calculations	195
Appendix B / Experimental Results Photos	r 1 9

LIST OF FIGURES

Fig. 1.1: Typical system for full-depth precast concrete bridge consisting	g of
precast concrete deck on precast concrete I-girder	١٦
Fig. 7.1: Free Body Diagram from (AASHTO Figure Co.A. 2.1-1)	۲٣
Fig. 7.7: segment represents the horizontal shear stress between web and	slab
panel	۲٤۲
Fig. Y.T: Aggregate Interlock	۲۸
Fig. 7.2: Basis of shear friction design method: (a) applied shear;	(b)
enlarged representation of crack surface; (c) free body diagram of cond	rete
above crack	٠٣٠.
Fig. Y.O: Free body diagram	٠.٤٠
Fig. 7.7: Cross-section of the hybrid FRP-concrete section	£A
Fig. ". ': Typical cross section for specimen (B ')-Control specimen	09
Fig. F.Y: Typical cross section for specimen (BY, BF, BE and Bo)	with
different shear connector's distributions and pocket details	٠.٦٠
Fig. ".": Typical cross section for specimen (B 7)-Using epoxy resin only	۲۲
Fig. 7. 2: Typical reinforcement details for the web of all specimens	۲۲
Fig. ".o: Typical reinforcement details for the flange (slab panel) of	° all
specimens	۲۲
Fig. 7.7: Shear connectors' distribution and pockets details for specimen	
Fig. T.Y: Shear connectors' distribution and pockets details for specimen	
rig. 7.7. Shear connectors distribution and pockets details for specimen	
Fig. T.A: Shear connectors' distribution and pockets details for specimen	ı B £
Fig. 7.9: Shear connectors' distribution and pockets details for specimen	
Fig. ". ! :: Reinforcement preparation	
Fig. ". !!: Plywood forms	
Fig. 7.17: Steel reinforcement placed in the plywood forms	
Fig. 7. 17: Casting concrete and compacting with electrical vibrator	۸۲

Fig. 7.12: Steel reinforcement placed in the plywood forms of the slab panels-
and installed steel pockets
Fig. ". 10: Casting concrete for the slab panels
Fig. 7.17: Casting concrete for the slab panels
Fig. ". 14: Placing the slab panels over the R-section beams
Fig. ". 14: Pouring non-shrink grout in the pockets
Fig. ". 19: Epoxy past preparation
Fig. ". \uparrow ": The standard $\uparrow \circ \cdot (mm) \times \uparrow \circ \cdot (mm) \times \uparrow \circ \cdot (mm) $ cubes
Fig. ". ۲): Details of the load cell
Fig. ". ۲7: Location of LVDTs to measure vertical deflection
Fig. ". "": Location of LVDTs to measure relative slip between slab panel and
beam's web
Fig. T. Y: Typical locations of strain gauges of the longitudinal main steel
reinforcement for beam specimens B 1 to B 7
Fig. ". Yo: Locations of strain gauges of shear connectors for beam specimen
<i>B</i> 7
Fig. 7. 77: Locations of strain gauges of shear connectors for beam specimen
<i>B</i> 7"
Fig. ". TV: Locations of strain gauges of shear connectors for beam specimen
<i>B</i> €
Fig. T. YA: Locations of strain gauges of shear connectors for beam specimen
<i>B</i> °
Fig. T. Ta: locations of strain gauges of corresponding stirrups for beam
specimen B , and B
Fig. ".": Concrete strain gauges
Fig. ".": Test Set-Up
Fig. "." Distributing steel I-beam supported on two steel rods rested on
neoprene plates^0
Fig. T.TT: Pin Support
Fig. 4.1: Failure loads for all beam specimens
Fig. 4. 7: Pockets cracking loads for specimens B 7 to B 0
Fig. ξ . ζ : Interfacial surface separation load for specimens B ζ to B ζ
Fig. £. £: Vertical deflection at failure load for specimens B † to B 7