Evaluation of the Role of Alpha-Fetoprotein (AFP) Levels in Chronic Viral Hepatitis C Patients, Without Hepatocellular Carcinoma (HCC)

Thesis Submitted for Partial fulfillment of Master Degree in Tropical Medicine

By
Ahmed ''Mohamed Essam'' Ismail Mahmoud
M.B.,B.Ch. - Sohag University

Supervised by

Professor / Hisham Khalil Dabbous

Professor of Tropical medicine Faculty of Medicine, Ain-Shams University

Doctor / Runia Fouad EL-Folly

Assistant Professor of Tropical Medicine Faculty of Medicine, Ain-Shams University

Doctor / Adham Mohamed Hamdan EL-Nakeeb

M.D., Tropical Medicine (Ain Shams University)
Head of Hepatology & Gastroenterology Department
Sohag Cardiology and Hepato-Gastroentrology Center
Specialized Medical Centers, Ministry of Health

Faculty of Medicine Ain-Shams University 2014

Evaluation of the Role of Alpha-Fetoprotein (AFP) Levels in Chronic Viral Hepatitis C Patients, Without Hepatocellular Carcinoma (HCC)

Thesis Protocol

Submitted for Partial fulfillment of Master Degree in Tropical Medicine

By
Ahmed "Mohamed Essam" Ismail Mahmoud
M.B.,B.Ch. - Sohag University

Supervised by

Professor / Hisham Khalil Dabbous

Professor of Tropical medicine Faculty of Medicine, Ain-Shams University

Doctor / Runia Fouad EL-Folly

Assistant Professor of Tropical Medicine Faculty of Medicine, Ain-Shams University

Doctor / Adham Mohamed Hamdan EL-Nakeeb

M.D., Tropical Medicine (Ain Shams University)
Head of Hepatology & Gastroenterology Department
Sohag Cardiology and Hepato-Gastroentrology Center
Specialized Medical Centers, Ministry of Health

Faculty of Medicine Ain-Shams University 2009

For ALLAH

To my Father

To my Wife

To my Mother

To my Kids

To my Sisters

To all of my family

Ahmed Essam

ACKNOWLEDGMENT

First and foremost, thanks for **ALLAH** for guiding and helping me to finish this work.

I would like to thank the principal supervisor **Prof. Hisham Khalil Dabbous.** It was a great honor to me to work under his supervision.

I would like to express my deepest gratitude to **Dr. Runia Fouad EL-Folly, Assistant Professor of Tropical Medicine, Faculty of Medicine, Ain-Shams University,** for her patience with me, enthusiastic and kind supervision, cooperation in all steps of this work, also for her continuous encouragement and sincere advice which have been the main factors to complete this work.

I would like to express my deepest gratitude to **Dr. Adham Mohamed Hamdan EL-Nakeeb, MD.,** for his continuous support and guidance. I am very much grateful for his noble characters and generous help.

I would like to thank **Dr. Laila Moahmmed Yousif, Assistant Professor of Clinical Pathology, Faculty of Medicine, Sohag University,** for her help and cooperation regarding histopathological examination of liver biopsies.

Also, I have to thank **Dr. Noha Asem EL-Balony, Lecturer of Public Health and Community Medicine, Faculty of Medicine, Cairo University,** for her helps as regards the statistical part.

On the other hand I'll never forget the great support from my dearest friend **Dr. Ahmed Roshdy EL-Agamy, Lecturer of Rheumatology and Rehabilitation, Faculty of Medicine, Sohag University,** for his helps as regards the statistical part.

Finally, I am delighted to express my deep gratitude and thanks to all my family, especially my father, my mother and my dear wife, all my dear professors and colleagues and my patients, without their help, this work couldn't be completed.

Ahmed "Mohamed Essam" Ismail Mahmoud January; 2014

CONTENTS

Title	Page No.
• Introduction	
Aim of the WorkReview of Literature:	4
 Chapter (I): Hepatitis C Virus Infection Chapter (II): Alpha Feto Protein (AFP) Chapter (III): AFP and Hepatitis C Virus 	62
Patients and Methods	92
• Results	102
• Discussion	119
• Summary	128
• Conclusions	132
Recommendations	133
References	134
• Δrahic Summary	

List of Tables

Tab. No.	Title Page
Tables of R	eview
Table (1):	Ishak Modified HAI Grading: Necroinflammatory Scores
Table (2):	Ishak Modified Staging: architectural changes, fibrosis and cirrhosis
Table (3):	Comparison of the efficacy of peginterferon and albumin-interferon Alfa 2b (Alb-IFN) combined with ribavirin after 12 weeks' treatment.
Table (4):	Antiviral efficacy and rate of anaemia (%) in patients treated with peginterferon alfa-2b plus either viramidine or ribavirin (Benhamou et
Table (5):	al., 2006)
Tables of R	Cesults
Tab. (1):	Gender, Age and BMI distribution among the two groups:
Tab. (2):	Liver Pathology Findings among the study
Fig. (3):	group:
Tab. (4):	groups:

List of Tables (Cont...)

Tab. No.	Title Pag	ge
Tab. (5):	Correlation between AFP level and patients	
	characteristics in different stages of liver	
	fibrosis:	9
Tab. (6):	Correlation between AFP level and PCR in	
	different stages of liver fibrosis among the	
	study group:110	0
Tab. (7):	Correlation between AFP level and different	
	stages of liver fibrosis in the study group: 11	1
Tab. (8):	Comparison between mean AFP at different	
	liver pathology findings among the study	
	group:	2
Tab. (9):	Area under the curve (AUC):11:	
Tab. (10):	Area under the curve (AUC):11	6
Tab. (11):	Multivariate analysis for the independent	
	factors associated with elevated AFP levels: . 11	7

List of Figures

Fig. No.	Title	Page		
Figures of Review				
Figure (I):	Structure of HCV genome and summary of HCV polyprotein processing.			
Figure (II): Figure (III):	Natural history of hepatitis C virus			
Figure (IV): Figure (V):	nucs: non-nucleoside)	53		
Figure (VI):	modifications			
Figure (VII):	diagnosis of HCC Flowchart showing the Egyptian Guidelines for early diagnosis of cases with HCC (malignant	78		

List of Figures (Cont...)

Fig. No.	Title	Page		
Figures of Results				
Fig. (1):	Fibrosis Stage among the study group	105		
Fig. (2):	Grades among the study group	105		
Fig. (3):	Steatosis among the study groupTab. (3):	The		
	Laboratory findings of the two studied group	ps: 106		
Fig. (4):	Correlation between AFP level and PC	R in		
	different stages of liver fibrosis among the s	study		
	group	110		
Fig. (5):	Correlation between AFP level and diff	erent		
	stages of liver fibrosis in the study group	111		
Fig. (6):	Mean AFP at different fibrosis stages amon	g the		
	study group	113		
Fig. (7):	Mean AFP at different activity grades amon	g the		
	study group	113		
Fig. (8):	Mean AFP in the presence of steatosis ar	nong		
	the study group	114		
Fig. (9):	ROC curve to determine AFP level in predi	cting		
	cases of chronic HCV	115		
Fig. (10):	ROC curve to determine AFP level in predi	cting		
	advanced stages of fibrosis "F3 and F4"	116		

LIST OF ABBREVIATIONS

AFP : alpha-fetoprotein ALF : acute liver failure

ALT : alanine aminotransferase ANA : antinuclear antibody ANOVA : analysis of variance

ARFP : alternate reading frame protein AST : aspartate aminotransferase

bm-JIS : biomarker combined-Japan integrated staging

CBC : complete blood count
CD : cluster of differentiation
CHC : chronic hepatitis C

CHC : chronic hepatitis C
DAA : direct-acting antivirals

DCP : des-gamma-carboxy prothrombin

DM : diabetes mellitus

DNA : deoxyribonucleic acid

E-PHA : erythroagglutinating phytohemagglutinin

EVR : early virologic response

G-CSF : granulocyte colony-stimulating factor

GGT : gamma-glutamyl transferase or transpeptidase

GP : glycoprotein

HCC : hepatocellular carcinoma

HCV : hepatitis C virus

HIV : human immunodeficiency virus

HP : hepatocyte proliferation IEF : isoelectric focusing

IFN : interferon IL : interleukin

INR : international randomization ratio IRF-9 : interferon-regulatory factor-9

ISRE : interferon-stimulated response elements

LDL : low density lipoprotein LT : liver transplantation

LIST OF ABBREVIATIONS (Cont...)

MC : mixed cryoglobulinemia

MPGN : membranoproliferative glomerulonephritis

NI : nucleoside inhibitors

NK : natural killer

NNI : non-nucleoside inhibitors

NS : nonstructural

PAMPs : pathogen-associated molecular patterns
PAT : parenteral antischistosomal therapy
PBMC : peripheral blood mononuclear cells

PCR : polymerase chain reaction

PEG-INF : pegylated interferon PIs : protease inhibitors

RCTs : randomized controlled trials

RdRp : RNA dependent RNA polymerase

RNA : ribonucleic acid

ROC : Receiver operating characteristic

RT : reverse transcription RVR : rapid virologic response

SD : standard deviation

STDs : sexual transmitted diseases SVR : sustained virologic response SVR12 : SVR obtained after 12 weeks

Th1 : type 1 CD4⁺ helper T TNF : tumor necrosis factor

TSH : thyroid-stimulating hormone

TTD : total tumor diameter TTV : total tumor volume

TVR : telaprevir

US : Ultrasonography

WHO : World Health Organization

Introduction

The World Health Organization has declared hepatitis C a global health problem, with approximately 3% of the world's population (roughly 170-200 million people) infected with HCV. Hepatitis C virus (HCV) infection is the second viral cause for chronic liver disease (CLD) in the world (*Alavian*, 2014). In the US, approximately 3 million people are chronically infected, many of whom are still undiagnosed. In Egypt the situation is quite worse (*Mohamed*, 2004).

In 2008, The Egyptian Demographic Health Survey estimated HCV prevalence among the 15–59 years age group to be 14.7% (*El-Zanaty and Way, 2009*). Accordingly, Egypt has the highest prevalence of hepatitis C virus (HCV) in the world, estimated nationally at 14.7%. (*Mohamoud et al., 2013*).

More than 70% of acute HCV infections become chronic, and 20% of chronic hepatitis C (CHC) patients may develop liver cirrhosis within 20 years, with or without hepatic decompensation or hepatocellular carcinoma (HCC). CHC is associated with an increased risk of HCC, especially in liver cirrhosis patients (*Lee et al.*, 2008).

HCV is known to be a human carcinogen based on sufficient evidence from studies in humans. Numerous cohort and case-control studies conducted in populations differing by race or ethnicity and in various geographical locations have demonstrated that chronic HCV infection causes a malignant tumor of the liver (HCC) (*Neelima et al.*, 2000).

Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors worldwide, with increasing incidence (*Tanaka et al.*, 2006).

In the United States, HCC incidence and mortality rates continue to increase, particularly among middle-aged black, Hispanic, and white men (*Altekruse et al.*, 2009).

Geographic variation in HCC incidence in Egypt has not been studied. Some reports have made simple comparisons between upper and lower Egypt as well as between urban and rural populations with respect to presumed exposures. However, the results were unsatisfactory (*Ezzat et al.*, 2005, Sayed et al., 2005 and El-Zayadi et al., 2001).

Asymptomatic patients diagnosed with HCC through screening programs are more likely to be candidates for curative treatment and to have improved short- and medium-term survival (*Wong et al., 2000* and *Yuen et al., 2000*).

In order to screen HCC in Egyptian patients with cirrhosis of all etiologies, 4-month intervals both serum alpha-fetoprotein (AFP>200ng) and liver ultrasound (US) are recommended (Esmat et al., 2009).

Alpha-fetoprotein (AFP) is a foetal glycoprotein which has been widely used as a serum marker for diagnosing hepatocellular carcinoma (HCC); however, elevated serum AFP levels have also been documented in non-HCC patients with chronic liver disease (*Chen et al.*, 2007).

AFP plays a limited role in the diagnosis of HCC, compared to imaging techniques. Increased detection of small lesions at presentation reflects increased awareness of the condition (*El-Zayadi et al.*, 2005).

While elevations in AFP are commonly seen in persons with chronic hepatitis C, elevated levels have been shown to be more commonly associated with chronic liver disease and fibrosis than HCC and the value of measuring AFP in HCV has been called into question (*Di Bisceglie et al.*, 2005).

Elevated serum AFP is not uncommonly seen in patients with CHC, but not HCC, and the incidence has ranged from 10% to 43% (*Chen et al.*, 2007).

Previous reports examining the relationship between the elevated AFP levels and the outcome in HCV have primarily included patients from clinic-based studies who have undergone liver biopsy or been diagnosed with HCC and some studies have followed patients prospectively (*Hu et al.*, 2004).

AIM OF THE WORK

The aim of this work was to evaluate the clinical significance of Alpha- Fetoprotein (AFP) levels in chronic hepatitis C patients without hepatocellular carcinoma (HCC).