Genetic Improvement of Insect-Pathogenic *Photorhabdus* Bacteria

Thesis
Submitted for the Degree of Ph.D. in Microbiology

By Shimaa Mahmoud Abdel-Hamid Salem Ghazal

B.Sc. in Microbiology (2001) M.Sc. in Microbiology (2009)

Department of Microbiology Faculty of Science Ain Shams University 2016

Genetic Improvement of Insect-Pathogenic Photorhabdus Bacteria

Thesis Submitted for the Degree of Ph.D. in Microbiology

By Shimaa Mahmoud Abdel-Hamid Salem Ghazal **B.Sc. in Microbiology (2001)** M.Sc. in Microbiology (2009)

Supervised by

Dr.

Mohamed A. A. Abou-Zeid

Prof. of Microbiology Microbiology Dept. Faculty of Science

Ain Shams University, Cairo, Egypt.

Dr.
Kamal M. A. Khalil

Prof. of Genetics

Genetics and Cytology Dept.

Genetic Engineering and Biotechnology

Division

National Research Center, Giza, Egypt.

Dr.

Louis S. Tisa

Prof. of Microbial physiology and

genomics

Dept. of Molecular, Cellular and

Biomedical Science

Collage of Life science and Agriculture

University of New Hampshire

Durham, NH, USA 03824

Dr.

Usamaa M. Badr

Researcher in Genetics Genetics and Cytology Dept.

Genetic Engineering and Biotechnology

Man Bady

Division

National Research Center, Giza, Egypt.

Department of Microbiology Faculty of Science Ain Shams University 2016

Approval Sheet

Genetic Improvement of Insect-Pathogenic *Photorhabdus* Bacteria

By

Shimaa Mahmoud Abdel-Hamid Salem Ghazal

B.Sc. in Microbiology (2001) M.Sc. in Microbiology (2009)

Supervisors

Approval

Dr. Mohamed Abdel-Montaser Abou-Zeid

Prof. of Microbiology, Microbiology Dept. Faculty of Science, Ain Shams University, Cairo. Egypt.

Dr. Kamal Mohamed Ali Khalil

Prof. of Genetics, Genetics and Cytology Dept. Genetic Engineering and Biotechnology Division National Research Center, Cairo, Egypt

Dr. Louis S. Tisa

Prof. of Microbial physiology and genomics Dept. Of Molecular, Cellular and Biomedical Science Collage of Life science and Agriculture University of New Hampshire, Durham, NH, USA 03824

Dr. Usamaa M. Badr

Researcher in Genetics, Genetics and Cytology Dept. Genetic Engineering and Biotechnology Division National Research Center, Cairo. Egypt

Examination committee

Dr. Sameer Abdel-Aziz Ibrahim

Prof. of Genetics, Genetics Dept. Faculty of Agriculture, Ain Shams University, Cairo, Egypt.

Dr. Hanan Adly Ghozlan

Prof. of Microbiology, Botany Department Faculty of Science, Alexandria University, Alexandria, Egypt.

بينمالنهالججالحين

صَيِّكَ <u>قاللْه العَظ</u>يمر سوره يوسف الآيه (٧٦)

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all praises to Allah for endowing me with strength, patience, and knowledge to complete this thesis. I would never have been able to finish my dissertation without the guidance of my committee members, help from friends, and support from my family.

I would also like to thank my Advisor, **Prof. Dr. Mohamed A. M. Abou-Zeid** for the continuous support of my PhD study and related research, for his motivation and immense knowledge. His guidance helped me in all the time of research. I could not have imagined having a better advisor and mentor for my PhD study from my home University Ain Shams.

I would like to express my special appreciation and thanks to my advisor **Prof. Dr. Kamal M. A. Khalil,** you have been a tremendous mentor for me. Thank you for encouraging my research and for allowing me to grow as a research scientist, your advice on both research as well as on my career have been priceless. He helped me come up with the thesis topic and guided me over almost twelve years of development and during writing this thesis.

I would like to express my deepest gratitude and appreciation to my advisor, **Prof. Dr. Louis S. Tisa** for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing my research. I cannot thank you enough for every min I spent in your lab, you gave me access to the laboratory and research facilities; even during the time I was not supported financially through the Egyptian mission. Without his precious support, it would not be possible to conduct this research, they way it looks today. My experience at UNH has been

nothing short of amazing. Since my first days at Dr. Tisa Lab, I have felt at home at UNH. Throughout more than three years as visitor scholar, I have been given unique opportunities and taken advantage of them.

I would like to thank **Prof. Dr. Mona Hussein** for helping me getting familiar with the nematodes and *Galleria*, answering my questions about them all the time and also her deepest prayers for me and my family. I also thank **Dr. Usama M. Badr** for his continues support and help.

Many thanks to my Lab colleagues at **Prof. Dr. Tisa Lab, UNH**; **Sheldon G. Hurst IV** and **Rediet Tamire** who have been so much helpful starting from my first day in Tisa Lab, answering my questions and help me get familiar with the lab and the techniques. I would also like to thank **Amy Michaud** not only for "always asking me if I need anything" but also for being my friend. I also would like to thank my colleagues at **applied microbial genetics lab** at National research center in Egypt for their support.

Special thanks go to the sector of Egyptian missions in Cairo, Egypt and the Egyptian Cultural and Educational Bureau in Washington D.C. for their financial support for two years in my PhD research.

A special thanks to my family. Words cannot express how grateful I am to my mother **Soad** for all of the sacrifices that you have made on my behalf. Your prayer for me was what sustained me thus far. My husband **Ahmed Alnazer**, I would not do this without your support, my little daughters **Arwa** and **Maram**, your presence in my life is priceless.

This thesis has not been previously submitted for any degree at this or any other university.

Signed
Shimaa Mahmoud A. S. Ghazal

TABLE OF CONTENTS

ACKNOWLEDGEMENT	V
LIST OF TABLES	XIV
LIST OF FIGURES	XIX
LIST OF ABBREVIATIONS	XXVII
ABSTRACT	XXIX
I. INTRODUCTION	2
Aims and Plan of Work	6
II. REVIEW OF LITERATURE	8
II.1. The entomopathogenic complex role as a biolo	ogical
Control	8
II.2. History and classification of <i>Photorhabdus</i> bac	cteria and
its related nematode	9
II.2.1. History of genus <i>Photorhabdus</i>	9
II.2.2. Photorhabdus luminescens	10
II.2.3 Heterorhabditis sp. associated nematodes	10
II.3. Characteristic criteria of genus <i>Photorhabdus</i>	11
II.3.1. Phenotypic variation: primary and secondary	cell
type	11
II.3.2. Bioluminescence	12
II.4. Bacterial –nematodes symbiosis and life cycle	13
II.5. Natural products involved in <i>Photorhabdus</i> lif	è15
II.5.1. the Enzymes	15
II.5.2. Insecticidal toxins and virulence mechanism	17

II.5.3. Antibiotics and antimicrobial agents	19
II.5.4. Pigments and other secondary metabolome	21
II.6. Genetic approaches of <i>P. luminescens</i>	22
II.6.1. UV irradiation	22
II.6.2. Transposon mutagenesis (Reverse genetics)	24
II.6.3. Fosmid library (Forward genetics)	26
II.7. Genome sequence and assembly	27
II.8. Bioinformatics tools and data mining	30
III. MATERIAL & METHODS	32
III.1. Materials	32
III.1.1. Organisms used in this thesis	32
III.1.2. Primers	34
III.1.3. Media	35
III.1.4. Devices	40
III.1.5. Kits	41
III.1.6. Chemical solutions and Buffers	43
III.1.7. Software, programs and Databases	47
III.2. METHODS	.49
III.2.1. Rearing of G. Mellonella and its infection by the	
EPN complex for the isolation of the nine wild types	
Photorhabdus sp	49
III.2.2. Differentiation between primary and secondary	
phases of the nine wild types <i>P. luminescence</i>	51

III.2.3. Biochemical, physiological and 16s rDNA
characterization for wild type P. luminescence BA1.54
III.2.4. Induction and selection of mutants using UV-
irradiation, detection of symbiosis with axenic
nematodes and presence of crystal proteins for some
selected mutants
III.2.5. Draft Genome sequence of <i>P. luminescence</i> BA1.65
III.2.6. Bioinformatics studies on <i>P. luminescens</i> BA1 69
III.2.7. Reverse GeneticsGenerating a transposon mutant
library of primary phase of P. luminescens BA1 by
mini <i>Tn5</i> delivery vector pUB39471
III.2.8. Fosmid library construction for <i>P. luminescens</i> BA1
87
IV. RESULTS
IV.1. Selection of the best <i>P. luminescens</i> wild isolate
among the nine wild type strains93
IV.1.1. Culture morphology, Bioluminescence and other
biochemical differences between primary and
secondary phase variants
IV.1.2. Determination of enzymatic and antimicrobial
activities
IV.2. Characterization of <i>P. luminescens</i> BA1
IV.2. Characterization of <i>P. luminescens</i> BA1

IV.3. Induction and selection of mutation using UV
irradiation113
IV.3.1. Induction of mutation by UV irradiation and
selection of remarkable antimicrobial and variable
enzymes producer mutants in <i>P. luminescens</i> Hb 113
IV.3.2. Induction of mutation by UV irradiation and
selection of potent antimicrobial and variable enzymes
producer mutants in <i>P. luminescens</i> BA1
IV.3.3. Effect of mutants on nematode (Heterorhabditis
bacteriophora) propagation and feeding
IV.3.4. CipA and cipB PCR for the Hb and BA1 UV
mutants
IV.4. Genomes of <i>P. luminescens</i> BA1, TTO1, HP88 and
Hm and P. temperata Meg1 and NC19129
IV.4.1. P. luminescens BA1 draft genome sequence 129
IV.4.2. P. luminescens Hp88 draft genome sequence 132
IV.4.3. <i>P. luminescense</i> Hm draft genome sequence 132
IV.4.4. P. temperata Meg1 draft genome sequence 133
IV.4.5. P. temperata NC19 draft genome sequence 134
IV.4.6. P. luminescens TTO1 draft genome sequence 134
IV.5 Proteomic comparisons among the five <i>Photorhabdus</i>
strains
IV.6. Bioinformatics studies on <i>P. luminescence</i> BA1139

IV.6.1. Reciprocal BLAST analysis using Venn diagra	ım
	139
IV.6.2. Phylogeny of <i>P. luminescens</i> BA1 based on	
Recombinase A (recA) gene analysis	141
IV.6.3. Phylogeny of the P. luminescens BA1 genome	S
based on whole genome annotation	143
IV.6.4. Analysis of <i>P. luminescens</i> BA1 secondary	
metabolome	145
IV.7. Reverse GeneticsTransposon Mutant Library	of P.
luminescens BA1	148
IV.7.1. Calculation of the transformation efficiency	150
IV.7.2. Plasmid Isolation from some selected BA1	
transformants	151
IV.7.3. Generating a transposon mutagenesis library	151
IV.7.4. Screening of mutants' library for alteration of	
physiological activity	154
IV.7.5. BA1 Draft PCR analysis for the suspected kno	ck
out gene in the transposon mutants	193
IV.8. Forward Genetics fosmid library construction	for P.
luminescens BA1	196
IV.8.1. Screening of the fosmid library for hemolysis	
activity	198
IV.8.2. <i>In vitro</i> pathogenesis for the fosmid clones	
hemolysis mutants	199

IV.8	3.3. Fosmid isolation and molecular characterization 2	204
V.	DISCUSSION	205
VI.	SUMMARY	235
VII.	REFERENCES	251
VIII	الملخص العربي	2

LIST OF TABLES

Table No.	Title	Pages
Table 1.	List of all <i>Photorhabdus sp.</i> strains and related nematodes.	32
Table 2.	Plasmids and growth tester organisms	33
Table 3.	List of the primers	34
Table 4.	Properties of primary and secondary phase cultures of the nine wild type <i>P. luminescens</i> strains	97
Table 5.	The swarming ring diameter in (mm) for primary phase of BA1, on different agar concentration 0.45%, 0.65%, 0.85%, 1.05% and 1.25% and incubation temperature 22°C, 28°C and 37°C, for 24h incubation time, the results shown with calculated Standard deviation	108
Table 6.	The effect of environmental condition on swim ring diameter (mm) for <i>P. luminescens</i> BA1 primary Phase cells Swim ring were measured after 24 h incubation. Results shown with calculated standard deviation	109
Table 7.	Top 10 hits description on the query of Sanger sequence for <i>P. luminescens</i> BA1 on BLAST	112

Table 8.	Percent production of Hb-UV mutants for the tested enzymes and the antimicrobial activity. Mutants were standardized to the wild type activity, which represents 100%. (*) Mutants that showed a significant increase in antimicrobial activity compared to the wild type. Data analyzed with the student t-test with <i>p</i> - value < 0.05%.	116
Table 9.	Percent production of BA1-UV mutants for the tested enzymes and the antimicrobial activity, Mutants was standardized to the wild type activity, which represents 100%. (*) Mutants that showed a significant increase in antimicrobial activity compared to the wild type. Data analyzed with the t-test with p - value < 0.05.	122
Table 10.	List of the UV mutants finally selected after treatment from <i>P. luminescens</i> Hb and BA1	125
Table 11.	Comparison of the major genomic features among <i>P. luminescens</i> BA1 and <i>P. luminescens</i> TTO1, <i>P. temperata</i> NC19, <i>P. luminescence HP88</i> and <i>P. temperata</i> Meg1	136
Table 12.	Distribution of CDS into different categories for the five <i>Photorhabdus</i> genomes.	138
Table 13.	Distribution and predicted products of the secondary metabolite biosynthetic clusters within the <i>P. luminescense</i> BA1 genome.	146