

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

2014

LASER PHOTOCHEMICAL TARGETING OF LIPOSOME ENCAPSULATED DRUG

A THESIS

Submitted

By

Moustafa Shaaban Abdel-Moneim Abu Hamed

(B.Sc.)

For The Degree of

MASTER OF SCIENCE

In Biophysics

(Molecular Biophysics)

Biophysics Department

Faculty of Science, Cairo University

2009

APPROVAL SHEET

- Title of the M.Sc. Thesis LASER PHOTOCHEMICAL TARGETING OF LIPOSOME ENCAPSULATED DRUG

Name of the candidate Moustafa Shaaban Abdel-Moneim Abu Hamed

Submitted to the Biophysics Department, Faculty of Science, Cairo University

Supervision Committee

1- Prof. Dr. Mohamed Hasanin Gaber
Professor of Biophysics
Faculty of Science, Cairo University

Mohal Gol

2- Dr. Maha Fadel Mohamed

Assistant professor of Pharmaceutical Technology
National Institute of Laser Enhanced Sciences, Cairo University

Head of Biophysics Department

Prof. Dr. Osiris Wanis Guirguis

5 MG mirgans

بِشِيْرُ الْمُأْلِجِ فَيَرِي

المَّامُ الْمُورِدُ اللَّهِ اللَّهُ اللَّا اللَّهُ اللَّا اللَّا اللَّا اللَّهُ اللَّهُ اللَّهُ اللَّا اللَّا اللَّهُ اللَّا اللَّلَّا الللَّا الللَّا الللَّهُ الللَّا الللَّا الللَّا الللّل

طلاقالعظيم

(فصلت) (فصلت

ACKNOWLEDGMENT

First of all, I would like to extend due praise and thanks to ALLAH that this work has been completed.

Many people have contributed to the final product. While I cannot single each of them out to say thanks for the help, understanding or encouragement. I have appreciated one and all. There are number of individuals, however, to whom I must give special thanks.

I would like to express my profound gratitude to **Prof. Dr. Mohamed H. Gaber,** Professor, Biophysics Department, Faculty of Science, Cairo University for his supervision, suggesting the research point, continuous guidance, fruitful discussions and for unlimited help throughout the completion of this work.

My gratitude extends also to Dr. Maha F. Mohamed, Assistant Professor, National Institute of Laser Enhanced Sciences, Cairo University for supervision, offering facilities and continuous encouragement.

Sincere thanks and grateful to my father, my mother, my wife and all my family for surrounding me with their love and generosity.

Finally, thanks are also presented to all my colleagues in Physics and Mathematical Engineering Departments, High Institute of Engineering, Alshrouk Academy, for their cooperative support.

To...

Our beloved, Great Prophet Mohamed

Who learned us and learned the entire world...

How to be human beings

MY MOTHER, MY FATHER,

MY WIFE,

MY CHILDREN,

AND

ALL MY FAMILY

Contents

	Page
Chapter I: Introduction and Aim of the Work	-1-
Chapter II: Review of Literature	-3-
2.1. Liposomes	-3-
2.1.1. Methods of Liposome Preparation	-3-
2.1.2. Liposomes as a Drug Delivery System	-4-
2.2. Photosensitizers	-7-
2.2.1. Photosensitization Mechanisms	-7-
2.2.2. Hypericin	-10-
2.3. α - Tocopherol	-17-
2.3.1. In general	-17-
2.3.2. Metabolism of vitamin E	-18-
2.3.3. Distribution and orientation of vitamin E in phospholipids	-19-
2.3.4. Antioxidant function of α-Tocopherol	-20-
2.4. Oxytetracyline	-21-
Chapter III: Theoretical Aspects	-22-
3.1. Laser and Laser-Tissue Interactions	-22-
3.1.1. History	-22-
3.1.2. Spontaneous and stimulated emission, absorption	-22-
3.1.3. Properties of laser beams	-26-
3.1.4. Laser-tissue Interaction	-32-
3.2. Differential Scanning Calorimetry (DSC).	-37-

3.2.1. Principles of differential scanning calrimetry	-37-
3.2.2. Methodological aspects	-40-
3.2.3. The thermotropic behavior of phospholipids	-41-
3. 3. Fourier Transform Infrared Spectroscopy	-42-
3.3.1. An introduction to infrared spectrometry	-42-
3.3.2. Types of molecular vibrations	-45-
3.3.3. Applications of infrared spectrometry	-46-
Chapter IV: Materials and Methods	-49-
4.1. Aim of the Work	-49-
4.2. Materials	-49-
4.3. Exposure System	-50-
4.3.4. Liposomes preparation	-50-
4.3.5. Determination of the encapsulated oxytetracyclin	-51-
concentration	•
4.3.6. Test conditions	-54-
4.3.7. Drug release studies	-55-
4.3.8. Steady-state measurements	-55-
Chapter V: Results	-58-
5.1. Absorption Spectra Results of Hypericin	-58-
5.2. Fourier Transform Infrared Spectroscopy Results	-61-
5.2.1. FT-IR Results of hypericin before and after exposure to laser beam	-62-
5.2.2. FT-IR results of unirradiated sample (I) and irradiated sample (I)	-64-
5.2.3 FT_IR results of unirradiated sample (II) and irradiated	-64-

sample (II)

5.3. Differential Scanning Calorimetry (DSC) Results	-69-
5.3.1. DSC results of unirradiated sample (I) and irradiated sample (I) of liposomes	-69-
5.3.2. DSC results of unirradiated sample (II) and irradiated sample (II) of liposomes	-72-
5.4. Drug Release Studies	-75-
Chapter VI: Discussion	-83-
6.1. Discussion of Absorption Spectra and FT-IR of HYP	-83-
6.2. Discussion of results of unirradiated sample (I) and irradiated sample (I) of liposomes	-84-
6.3. Discussion of results of unirradiated sample (II) and irradiated Sample (II) of liposomes	-86-
Summary	-89-
References	-90-

List of Figures

	Pag
Figure (2.1): Schematic diagram shows the structure	e of hypericin -11-
Figure (2.2): Schematic presentation of light induced	d released of -16
encapsulated materials.	
Figure (2.3): Naturally occurring forms of vitamine	E -18-
Figure (3.1): Schematic illustration of the three proce	sses; (a)spontaneous -24-
emission, (b) stimulated emission and ((c) absorption
Figure (3.2): Divergence of laser beam.	-30-
Figure (3.3): (a) Surface brightness at the point O fo	r a general source of -31-
em wave (b) Brightness of a laser bean	n of diameter D and
divergence θ .	
Figure (3.4): Fate of incident light on skin.	-32-
Figure (3.5): Absorption spectra of principal tissue of	hromophores34-
Figure (3.6): Schematic representation of the thermo	gram of melting (at -39-
40°C). (a) Describes the temperature de	pendence of the
enthalpy difference.(b)The temperature	e dependence of C_p .
Figure (3.7): Types of molecular vibrations.	-45-
Figure (4.1): Standard curve of oxytetracyclin drug/a	at pH=7 -53-
and λ_{max} =362.5 nm.	
Figure (5.1): Absorption spectrum of hypericin in	5% alcohol in water -59-
before exposure to laser beam.	
Figure (5.2): Absorption spectrum of hypericin in	5% alcohol in water -60-
after exposure to continuous wave	laser beam for 6
minutes.	
Figure (5.3):FT-IR absorption spectrum of OH	I group region of -62-
hypericin before exposure to laser bea	m.

Figure (5.4): FT-IR absorption spectrum of OH group region of	-63-
hypericin after exposure to laser beam.	
Figure (5. 5): FT-IR absorption spectrum of control sample (I) of	-65-
liposomes.	
Figure (5. 6): FT-IR absorption spectrum of sample (I) of liposomes	-66-
after exposure to laser beam.	
Figure (5. 7): FT-IR absorption spectrum of control sample (II) of	-67-
liposomes.	
Figure (5.8): FT-IR absorption spectrum of sample (II) of liposomes	-68-
after exposure to laser beam.	
Figure (5.9): DSC thermogram of control sample (I) of liposomes.	-70-
Figure (5.10): DSC thermogram of sample (I) of liposomes after	-71-
exposure to laser beam.	
Figure (5.11): DSC thermogram of control sample (II) of liposomes.	-73-
Figure (5.12): DSC thermogram of sample (II) of liposomes after	-74-
exposure to laser beam.	
Figure (5.13): Represents drug releasing curves of control sample (I)	-77-
and sample (I) of liposomes.	
Figure (5.14): Represents the drug releasing curves of control sample	-78-
(II) and sample (II) of liposomes.	
Figure (5.15): Represents the drug releasing curves of control sample (I)	-79-
and control sample (II) of liposomes.	
Figure (5.16): Represents the drug releasing curves of sample (I) and	-80-
Sampl (II) of liposomes.	
Figure (5.17): Represents the percentage release of the drug from	-81-
unirradiated sample (I), irradiated sample (I),	
unirradiated sample (II) and irradiated sample(II).	